KATHOLIEKE UNIVERSITEIT

LEUVEN

4

Faculteit

z Ingenieurswetenschappen

The design and efficient software
implementation of S-boxes

Markus Ullrich

Thesis submitted for the degree
of Master of Engineering:
Electrical Engineering

Promotors:

Prof. dr. ir. Bart Preneel
Prof. dr.ir. Vincent Rijmen

Assessors:

Dr. ir. Christophe De Canniére
Prof.dr.ir. Luc Van Eycken

Counsellors:

Dr. ir. Christophe De Canniére
Dr.ir. Sebastiaan Indesteege
M.S. Ozgiil Kiiglik

ir. Nicky Mouha

Academic year 2009 — 2010

© Copyright K.U.Leuven

Without written permission of the promotors and the authors it is forbidden to re-
produce or adapt in any form or by any means any part of this publication. Requests
for obtaining the right to reproduce or utilize parts of this publication should be
addressed to Departement Elektrotechniek, Kasteelpark Arenberg 10 postbus 2440,
B-3001 Heverlee, +32-16-3211 30 or by email info@esat.kuleuven.be.

A written permission of the promotor is also required to use the methods, products,
schematics and programs described in this work for industrial or commercial use,
and for submitting this publication in scientific contests.

Preface

When I arrived in Leuven for the first time almost two years ago, I would never have
guessed how fast time can fly. Now, the thesis is finished and my time as a student
is nearing its end. The thesis is a worthy end of my career as a student.

When I look back on the last year, I would like to thank everyone who helped me
on my way. First of all, I would like to thank my promotors Prof. Bart Preneel and
Prof. Vincent Rijmen. I would also like to show my gratitude to my daily supervisors,
Christophe De Canniére, Sebastiaan Indesteege, Ozgiil Kiiciik and Nicky Moubha.
Their support for technical and practical issues was a great help.

Then I would like to thank my family. I am very grateful for my parent’s help
which made it possible for me to study abroad. I also appreciate my brother Christian
for reminding me that a healthy mind requires a healthy body. I am also thankful to
my father and Monique for helping with proofreading the thesis. I like to thank my
girlfriend Sarah for all the support she gave me and also for the positive distraction
from the work. And of course I should not forget to appreciate her great patience
which was probably needed towards the deadline.

I also like to thank my fellow students. I made good friends and we had good
times. I wish them all the best with their theses and their future.

The community of free software developers deserve my special thank. Not only
most of the software tools used for developing or writing the thesis, but also the
some of the libraries used in the software tool designed in this work were available
under free licenses.

Finally, I also would like to express my gratitude to my assessors, Prof. Luc Van
Eycken and Christophe De Canniére, for their efforts to evaluate my thesis.

Markus Ullrich

Contents

Preface
Contents
Abstract

List of Figures
List of Tables

List of Abbreviations

1
2

ii

Introduction

Theoretical background

2.1
2.2
2.3
2.4

Algorithms

3.1
3.2
3.3
3.4

Properties of s-boxes e
Classification of s-boxes L.
Designing s-boxes oL . e
Implementing s-boxes e

Linear and affine equivalence algorithm
Data structures and memory management
Conclusion

Parallelisation and performance

4.1
4.2
4.3
44
4.5
4.6

Results
The most efficient implementations
Affine equivalence and the NOT instructions
Comparison with literature
A newdesignapproacho oL
Conclusion

5.1
5.2
5.3
5.4
5.5

Reducing the branching factoro
Expected amount ofnodes oo
Parallelisation
Code level optimisation
Checkpointing
Conclusion

ii

iv

vi

vii

0 O W W

CONTENTS

6 Conclusion 45
6.1 Achievements of this thesis 45
6.2 Furtherwork 46

A Most efficient implementations 49

B Extended table of all classes 59

Bibliography 65

iii

Abstract

Recently, more and more secure applications are run on embedded and mobile
platforms. This increases the need for highly efficient and lightweight primitives.
Substitution boxes are an essential part of many cryptographic primitives and can
be found in a lot of applications of symmetric cryptography. This thesis concerns
the efficient bit sliced implementation of 4 X 4-bit s-boxes. In order to find efficient
implementations, all possible implementations in form of instruction sequences have
been searched, and analysed for their properties as an s-box.

As a method we introduce a combination of algorithms in order to find the efficient
implementations. The s-boxes are classified according to non-linear properties and
it is searched for the most efficient one per class, the representative of the class.
We discuss several methods for speeding up the search. The main focus is on the
algorithmic level and on the parallelisation. On the one hand, we show methods
that allow to significantly reduce the branching factor of the search tree by using
equivalences instead of equalities as a basis for sorting out redundant nodes. On the
other hand, we discuss two parallelisation approaches for two different architectures,
a multi core computer and a computer cluster. This results in the design of a software
tool, which is used to perform the search for the most efficient implementations.

As result we present a list of all optimal implementations found so far, and
analyse the relationship between implementation cost and non-linear properties.
We discuss specific properties of the representatives that are invariant within the
class. We also investigate some characteristics of the implementations such as the
instructions needed to reach certain properties. We look into existing primitives
using 4-bit s-boxes, e.g., Serpent, Luffa and Noekeon. Their s-boxes are analysed
and discussed in comparison with the representatives of the classes. None of the
analysed primitives uses a representative.

Finally, we present a new design methodology. The suggested approach allows
a designer to benefit from the results of this work when designing highly efficient
ciphers.

iv

List of Figures

2.1
2.2
2.3

3.1

3.2

4.1

4.2

4.3
4.4

5.1
5.2
5.3
5.4
5.5

Example of the polynomial representation of the output bits of an s-box 7
Schematic of the affine equivalence 7
Example of a bit sliced representation with the value 0xB in the first

slice, where register 0 contains the least significant bit 9
Illustrating the differences between the breadth first search, the depth

first search and the iterative deepening depth first search 12
Example of the linear equivalence algorithm 15
Schematic of the modified affine equivalence relationship used in the

caching algorithm 20
Comparing the different equivalence algorithms for the cache: number of
nodes vs. the depth of the search 21
Example of a node expansion 23
Example of the algorithm to find the smallest bit permutation 26
The relationship between the figure of merit and the implementation cost 31
Example of a s-box with a non-resolvable De Morgan loop 33
Example of a s-box of type 2 34
The s-box constraints of Serpent [1] 34
Comparing ‘smallest s-box ever’ from Luffa with the equivalent found by us 35

List of Tables

2.1 Example s-box with difference distribution table
2.2 Differential characteristic of the s-box table 2.1
2.3 Linear approximation table of the s-box from table 2.1
2.4 Linear characteristic of the s-box from table 2.1

5.1 Minimum cost required to implement an s-box with a given MLP
5.2 Minimum cost required to implement an s-box with a given MDP
5.3 Implementations of the affine equivalence classes 1-50
5.4 Implementations of the affine equivalence classes 51-100
5.5 Implementations of the affine equivalence classes 101-150
5.6 Implementations of the affine equivalence classes 151-200
5.7 Implementations of the affine equivalence classes 201-250
5.8 Implementations of the affine equivalence classes 261-300
5.9 Implementations of the affine equivalence classes 300-302

B.1 Most efficient implementations with additional details 1-30
B.2 Most efficient implementations with additional details 31-84
B.3 Most efficient implementations with additional details 85-138
B.4 Most efficient implementations with additional details 139-192
B.5 Most efficient implementations with additional details 193-246
B.6 Most efficient implementations with additional details 247-302

vi

[

List of Abbreviations

Abbreviations

ALU Arithmetic Logic Unit

BEFS Breadth First Search

DFS Depth First Search

ID-DFS Iterative Deepening Depth First Search

MDP Maximum Differential Probability

MLP Maximum Linear Probability

MOV Move, name of the copy instruction in many microprocessors
S-BOX Substitution Box

SPN Substitution-Permutation-Network also called SP-Network

vii

Chapter 1

Introduction

The history of substitution boxes reaches back to 1949 when Claude Shannon proposed
the principles of confusion and diffusion [28]. The method of confusion is to make
the relation between the simple statistics of the ciphertext and the simple description
of the key a very complex and involved one. Diffusion is a similar method but
applies to the relationship between plaintext and ciphertext. This principle is still
widely used in many types of symmetric cryptographic primitives such as block
ciphers, stream ciphers and hash functions. Many applications such as those in
mobile devices or RFID tags require very lightweight and efficient primitives. The
major problem with some of the widely used primitives is, that their design strategy
was focused mainly on security and that the efficiency of implementations was not
always a major goal. This work copes with the problem of efficient implementations
of s-boxes as an essential part of cryptographic primitives. S-boxes are non-linear
functions applied on small amounts of data, typically of sizes 4 to 8 bit. The basic
idea of the approach of this thesis is based on fact that s-boxes can be classified. The
search proceeds in well-chosen order through all instruction sequences such that the
most efficient implementations are found first. It follows that for each class the best
implementation is found first. The work includes the design of a software tool, which
actually performs the search for efficient implementations. Below, an overview of
the constraints of this thesis is given, the details of which are found in the according
chapters:

o The size of the s-boxes has been limited to 4 x 4-bits. Most of the s-boxes
applied in practice have sizes, which are a power of 2, for efficiency reasons.
The next larger size, 8 x 8-bits, is not suited for this type of brute force search
because of the immense search space. Even 5 x 5-bit s-boxes are expected to
extend a realistic search space.

e We only look at invertible s-boxes. In principle the approach would work
with non-invertible s-boxes as well. But we decided to limit our scope to
non-invertible ones because of the different applications. Ciphers based on
Substitution-Permutation-networks require invertibility. Some other primitives
do not require this property, e.g., Feistel ciphers. Another argument is the

1.

INTRODUCTION

efficiency. The search space for non-invertible s-boxes is larger and some
of the used algorithms, e.g., the equivalence algorithm, are less efficient for
non-invertible s-boxes.

Affine equivalence is used as classification criteria for the s-boxes. S-boxes
that are affine equivalent have the same properties with respect to linear and
differential cryptanalysis. This classification thus reduces s-boxes to their
essence with respect to those properties. Details in section 2.2 and 3.2

The search has been designed for bit sliced software implementations assuming
a simple instruction set. The basic approach can be extended to other archi-
tectures and hardware implementations. This configuration helps to limit the
search space for efficiency reasons. Details in section 3.1.

In chapter 2, the basics about s-box properties, the classification and design

strategies of s-boxes are presented. In chapter 3, the different algorithms that are

used in the tool are explained. Further, the restrictions of the implementation are
introduced. In chapter 4, we explain implementation specific changes that have been

applied for efficiency and reliability. The chapter also deals with the parallelisation

of the program. Chapter 5 presents the results obtained by applying the software

tool developed in this thesis. The results are analysed and compared with those

found in the literature. In the last chapter, chapter 6, we conclude the work with a

summary and suggestions for future research.

Chapter 2

Theoretical background

In the first section of this chapter the most important properties of s-boxes in
reference to cryptanalysis will be introduced. In section 2.2 the properties are
applied to classify s-boxes. Section 2.3 copes with a number of the different design
methodologies for s-boxes that have been proposed. The methodologies are compared
with the new approach of this thesis. In section 2.4 an explanation about bit sliced
implementations is given.

2.1 Properties of s-boxes

2.1.1 Differential and linear cryptanalysis

Linear and differential cryptanalysis are considered as being some of the most
important techniques for symmetric cryptanalysis [5, 16, 18].

Initially published in the late 80s, differential cryptanalysis gained attention in
1991, when a modified version successfully attacked the full 16-round DES. The basic
idea of differential cryptanalysis is to find correlations between differences of input
blocks and the differences of the corresponding output blocks.

Before explaining differential properties of s-boxes, some basic principles of ciphers
have to be introduced. Ciphers, such as DES or AES, consist of three basic building
blocks: the diffusion layer, confusion layer and the key addition. The key addition
is, due to the properties of the addition in GF(2), transparent to differences. The
diffusion layer is a linear operation, which can influence the differences, but always
in a predictable way. This leaves the non-linear s-box to prevent a high correlation
between the input and the output differences. From an ideal s-box one would expect
that, for any input difference, all output differences are equally probable. In reality
this is mathematically not possible. First, A, = 0 implies that the compared input
values are equal. Consequently, they will also be mapped to the same values and
result in an output difference A, = 0. Second, every difference occurs twice because
of the commutativity of the addition in GF(2). This means that, when counting
the occurrences of difference pairs, it will always result in even numbers. Table
2.1 shows an example of an s-box with its difference distribution table. It contains
the probabilities that a certain input difference A; will result in a certain output

3

2. THEORETICAL BACKGROUND

TABLE 2.1: Example s-box with difference distribution table

A,
N o 1 2 3 4 5 6 7
0 0 0 1 0 0 0 0 0 0 0
1] 2 1 0o 0 1/2 0 1/2 0 0 0
2| 1 2 012 0 0 0 0 0 1/2
3|5 3 O 0 0 1/2 0 1/2 0 0
41 6 4 o0 0 0 0 0 1 0
5| 4 5 0O 0 1/2 0 1/2 0 0 0
6| 7 6 012 0 0 0 0 0 1/2
71 3 7 O 0 0 1/2 0 1/2 0 0

TABLE 2.2: Differential characteristic of the s-box table 2.1

p|1/4 1/2 3/4 1
#] 0 12 0 2

difference A,. Attackers are interested in pairs with a high probability, such as
A; = 4, which always leads to an output difference of A, = 6. The s-box can then
be characterised by the distribution of the probabilities such as in table 2.2.

A few years after differential cryptanalysis, linear cryptanalysis has been developed.
Linear cryptanalysis investigates linear relationships between the plaintext and the
ciphertext, or parts of them. As for differential cryptanalysis, the non-linear s-box
is responsible for reducing the correlation between input and output bits. Binary
masking functions (I') are used as notation to describe the selected bits. Those
functions indicate for the input and the output which bits are take into account for
the linear approximation. Formula 2.1 describes how the key can be approximated
from the input of the round, X, and the output of the round, Y, using masking
functions.

I, -Xol, Y=I} K (2.1)

Equivalent to the difference distribution table, a linear approximation table can be
created. The linear approximation table for the example s-box can be found in table
2.3. This table indicates the absolute correlations between the masked input and
outputs. The table shows that, for example, the output bit 1 follows input bit 2 for
all possible inputs. High correlations offer possibilities for attacks.

It is not sufficient to compare the security of s-boxes by comparing the averages
of these properties. The extreme values of the tables are a very important property
because attackers try to abuse the worst case. Those values are called maximum
linear probability (MLP) and maximum differential probability (MDP). If an attacker
finds linear of differential pairs that have a high probability he can estimate part of
the cipher and attack the cipher round by round.

An example for an attack using linear and differential cryptanalysis is given
in [13].

4

Properties of s-boxes

TABLE 2.3: Linear approximation table of the s-box from table 2.1

L

0 1 2 3 4 5 6 7
I;

0 1 0 0 0 0 0 06 0
1 0 0 0 0 0 0 1 0
2 0 1 0 0 0 0 0 0O
3 0 0 0 0 0 0 0 1
4 0 0 1/2 1/2 1/2 1/2 0 0
5 0 0 1/2 1/2 1/2 1/2 0 0
6 0 0 1/2 1/2 1/2 1/2 0 0
710 0 1/2 1/2 1/2 1/2 0 0

TABLE 2.4: Linear characteristic of the s-box from table 2.1

le| | 1/2 1
|16 4

2.1.2 Other s-box properties

In this section other properties of s-boxes will be introduced. This is only a selection
of properties that have been chosen because of their importance for the design
strategies of many primitives. These properties are of less importance for this thesis
and will be explained more briefly.

2.1.2.1 Branch number

When talking about branch numbers, one has to clarify which definition of branch
numbers is referred to. The first definition is the minimum sum of the input difference
and output differences word weight. It is a measure of how many input and output
words that will have to change minimally. For example, in a cipher with branch
number 4, one input word change will change at least 3 output words. Important is
that if more input words change the number of output words that have to change is
lower. This definition is applicable for whole SP-networks. The non-linear s-boxes as
well as the linear diffusion layer can influence on the branch number.

Definition 2.1 B = mingpso(wy(a ® b) + wy,(F(a) ® F(b))

Where wy, return the number of non-zero words, and F is the round function of the
cipher [10]. It is a measure for how many words have changed.

The other definition, which is applicable for single s-boxes and therefore more
suited for this thesis, defines the minimum amount of input and output bits that
will be changed by the s-box.

Definition 2.2 B = mingpso(wp(a & b) + wp(S(a) @ S(b))

2. THEORETICAL BACKGROUND

Where wp, is the Hamming weight and S is the non-linear function. The second
definition is not commonly used. In literature often other terms are used, such as in
PRESENT [6], where the s-box is chosen to satisfy the following condition:

VAr € F% 75 0 and wh(A[) =1
VAo € IF% and wp(Ap) =1
{x € F3|S(x) + S(z+ A7) = Ao} =10 (2.2)

This is equivalent to B > 2, for the branch number according to definition 2.2.

Generally, it is valid, that the more s-boxes that are active in a cipher, the
higher is the complexity of an attack. Both the linear layer and the s-box layer
take part of in defining the branch number of an SP-network. If the linear layer
consists of permutations only, as for example in PRESENT, it can only be guaranteed
that multiple s-boxes get activated if the s-box has a branch number higher than 2
according to definition 2.2.

2.1.2.2 Fixed points

Some design strategies for cryptographic primitives require that the s-box has no
fixed point, meaning that there is no value z such that = S(z). A fixed point is not
necessarily a weakness. But there are applications, especially in combination with
special linear layers or in some hash functions where fixed points are disadvantageous.
The fixed point S(0) = 0 can even cause that the whole cipher maps 0 to 0 if the
key is zero. This is also not necessarily a weakness. The KATAN family of block
ciphers is an example of ciphers with this property. Even though the cipher is not
using classical s-boxes, but is inspired by stream cipher design using LFSR (linear
feedback shift registers) [19].

2.1.2.3 Algebraic degree

Every s-box can be described as a set of polynomials. Each polynomial gives one
output bit in function of the input bits.

Figure 2.1 shows an example of an s-box with corresponding polynomials describ-
ing the output bits. The s-box output consists of {yo, y1,%2,¥4}. The s-box in the
example has large variations in the algebraic degree of the different outputs. While
yo has a degree of 3, y; has a degree of only 1. The degree of the polynomial as
well as the amount of different monomials are important properties for algebraic
cryptanalysis [3, 12]. The maximum algebraic degree is limited by the s-box size and
the implementation constraints. For an invertible 4 x 4-bit s-box it is limited to 3.

2.2 Classification of s-boxes

In the last section, we introduced different properties that can characterise s-boxes.
Having the ability to characterise s-boxes, one can go one step further and classify
them in classes with common properties. Before talking about classifications the

Classification of s-boxes

Yo = ZT2-21- 2o+ T3

Yy = o1

Y2 = Ta+2x3 -T2+ 13+ 29
© Y3 = 2322+ 23+ o

Y4 = T4 =20

6
Yo Y, Y, ¥, v,

FIGURE 2.1: Example of the polynomial representation of the output bits of an

s-box
A
a
S1 S2
b
B

FIGURE 2.2: Schematic of the affine equivalence

structure of ciphers should be recapitulated. Considering an SP-network or a Feistel
network, which consist of linear diffusion components and non-linear confusion com-
ponents. The separation of those components is not strict. Parts of the linear network
could be applied to the s-box, which results in a new s-box. Linear transformations
can be a part of the linear network or of the s-box. Referring back to the properties,
which describe the non-linear behaviour of the s-box, we would like to find groups of
s-boxes that share the non-linear properties. The differences between the s-boxes
within a class can be moved into the linear layer. For the classification the affine
equivalence has been chosen. The affine equivalence is defined by all s-boxes that

2. THEORETICAL BACKGROUND

can be transformed into each other by applying affine mappings at the input and
the output of the s-box as shown in figure 2.2. The algorithm to actually determine
an equivalence or to calculate the lexicographically smallest representative of the
class are presented in section 3.2. In the last section, it has been shown that the
linear layer has no influence on the linear and differential properties. This results in
invariant linear approximation and differential distribution tables for all s-boxes of
the same class. The affine mappings can only swap the elements in the table but not
change values itself. The properties, such as algebraic degree, branch number and
fixed points are not invariant within a class. For fixed points, it can easily be shown
that every affine equivalence class has elements with and without fixed points. An
affine mapping swaps elements in the lookup table according to the affine constant
and can thus always create any fixed point. Even though the algebraic degrees of
the output bits are not invariant within a class, the maximum degree of the outputs
is preserved throughout a class.

2.3 Designing s-boxes

While in the last section the desired properties of s-boxes have been introduced, this
section will show several important design methodologies that can be found in the
literature. The section concludes with a comparison with the approach of this work.

One of the early methods is the random s-box design. Random lookup tables
are created and their properties are compared with the constraints chosen by the
designer. This process is repeated until a suitable s-box is found. The problem of this
approach is that the focus is on mathematical properties and not on implementation
efficiency. For table based implementation the efficiency is independent of the s-box.
For bit sliced implementations it is difficult to assess the implementation cost, see
[24]. Serpent is an example of a cipher that has been designed by this method. The
most efficient implementations have been evaluated long after the design of the cipher
by Osvik.

The random approach does not always lead to satisfying results within a practical
search time. This is usually the case if specific properties are required. Some
designers used special design methodologies that lead to the desired mathematical
properties. An example is Rijndael with its wide trail design strategy, which defines
criteria for the s-boxes and the linear layer to withstand linear and differential attacks
[22]. The s-box is based on the multiplicative inverse, S(z) = z~!, but some linear
transformation are added [10].

There are many other design strategies, as for example for 6 x 6 s-boxes [11]. For
this work we will not go further into detail about approaches for s-boxes larger than
4 x 4.

Another approach has been used for the ciphers Noekeon and Luffa. The approach
returned to the random trials. The significant difference to the approach of Serpent
is that it takes implementation issues into account. Rather than generating random
lookup tables, random implementations are created. The implementations are
generated as a sequence of assembly instructions. In the next step, it is checked if the

8

Implementing s-boxes

reg0poooocxT]
reg 1 poooooxT]
reg2pocooaxd]
reg3 poooocxd]
reg4foocooo]

FIGURE 2.3: Example of a bit sliced representation with the value 0xB in the first
slice, where register 0 contains the least significant bit

sequence represents a bit sliced implementation of an s-box with the desired properties.
The search is repeated until an s-box is found that suffices the requirements. The
chances to find invertible s-boxes with this random approach are rather low. It has
further been discovered that even most of the valid permutations have only weak
non-linear properties or are fully linear [29]. Luffa tries to avoid this by designing
random sequences of more complex building blocks that guarantee to result in valid
permutations.

In this thesis a new methodology is introduced. This approach focuses on
implementation efficiency. Rather than trying random combinations of instructions,
we use a brute force approach to search through all possible sequences of instructions.
In difference to Osvik, the algorithm is not looking for a specific s-box, but trying to
cover the whole range of s-boxes. Using the theory about equivalences, we look for
the smallest s-box among all s-boxes with common properties. The s-box is reduced
to its non-linear operation and linear operations are moved into the linear layer. The
method results in a list of optimal implementations, which can then be used by the
designer to work out the trade-off between implementation cost and non-linearity
[15].

2.4 Implementing s-boxes

There are principally two methods to implement s-boxes in software. Often s-boxes
are stored as constants in the form of lookup tables. The efficiency of this type of
implementation is independent of the s-box. When accessing the s-boxes, memory
lookups will be performed independent of what value is stored in the memory. The
implementation method that is treated in this thesis is called bit sliced implementation.
Bit slicing is a technique that enables calculating multiple bit operations in parallel
on an architecture with larger word length. Bit slicing can be applied efficiently to all
algorithms whose instruction sequence is independent of the data and for instructions
which are bitwise, or to be more general, for instruction which do not have a, carry
over between the different slices. S-boxes which can be decomposed into boolean
functions can be implemented in a bit sliced manner. This requires at least one
more register than the size of the s-box [24]. The input is stored into a slice over
all registers as indicated in figure 2.3. Taking the 8051 processor as an example,

2. THEORETICAL BACKGROUND

up to eight s-boxes can be calculated in parallel on a 8-bit architecture [2]. After
the sequence of bit manipulating operations have been applied, the results can be
found in the registers. To compare the efficiency of the bit sliced implementations,
we assume a memory access time of two cycles. The lookup table approach will
thus need two cycles per s-box, or 16 cycles for eight s-boxes. The cycles needed for
an s-box in a bit sliced implementation can not be determined generally because
it depends on the s-box itself. But for up to 16 cycles the bit sliced method is
more efficient than the lookup table, assuming a parallelism of 8. Many processor
architecture allow much higher parallelism. Using SEE, processors can even work
with words of 128 bit width, which means that even if the memory access time is
only one cycle the break even is at 128 instructions for a bit sliced implementation.
The exact implementation costs of the classes representatives can be found in the
tables 5.3-5.9.

Another important property that has to be considered when implementing s-boxes
is the strength against side channel attacks such as the caching attacks on look-up
table implementations [8].

10

Chapter 3

Algorithms

In the previous chapter different concepts for s-box design, their properties and the
impact on cryptanalysis have been discussed. In this chapter the basic concepts
and algorithms used in this thesis will be discussed. The search algorithm and the
algorithms to determine equivalences between s-boxes is looked at in more detail.

3.1 Search

A core functionality of the program is the search. This algorithm searches through
all possible instruction sequences that can be constructed by a given architecture.
The instruction set is limited to a subgroup of instructions that can be used for bit
slicing. The following instructions have been included: AND, OR, NOT, MOV and
XOR. To further limit the search space the number of registers has been limited to 5,
which enables to store one intermediate result next to the the 4 bits of the s-box. To
find the most efficient search strategy the following techniques have been evaluated
[21]:

e breadth first search (BFS)
e depth first search (DFS)
e depth first search with iterative deepening (ID-DFS)

The breadth first search expands all nodes in the same depth first and then
advances one iteration to expand all nodes of the following depth, see figure 3.1(a).
This has the big advantage of minimising the computational overhead. No node
has to be calculated multiple times and not more nodes than necessary have to be
calculated to find all solutions. The downside of this approach is that the memory
requirement is exponential in the depth of the tree. Every branches endpoint has to
be saved to be expanded later on. For large branching factors the number of branch
endpoints is relatively close to the total number of nodes.

The depth first search follows a branch as deep as possible. Only if it reaches
an end point or a limit it backtracks and tries a different branch, see figure 3.1(b).
This has the advantage that the memory usage is only linear in the depth of the tree.

11

3. ALGCORITHMS

(5)) (D (8 R

0101610

o o

(a) Example of a breadth first
search

(c) Example of a iterative
(b) Example of a depth first deepening depth first search
search

FIGURE 3.1: Illustrating the differences between the breadth first search, the depth
first search and the iterative deepening depth first search

This method is not well suited for applications in which the maximal depth required
is not known. The limit has to be guessed. If the guess was too large some branches
are searched much deeper than necessary. This may result in a severe performance
degradation. In the opposite case, when the depth has been guessed too low, the
algorithm will not reach its goal.

We finally decided to use the iterative deepening depth first search. The search
performs like a depth first search with the difference that there is a limit that is in
the first iteration chosen as small as possible such that at least one node is included.
When the search finishes, it is started all over again with a limit that is set to the least
costly node that was above the previous limit, see figure 3.1(c). This way the memory
efficiency of the depth first search can be combined with the computational efficiency
of the breadth first search. The effort is approximately one over the branching factor
larger than for the breadth first search, but guarantees that the algorithm does not
search deeper than necessary. The decision is based on the uncertainty how the
optimal implementations are distributed within the tree.

The branching factor for an instruction set consisting of the basic boolean
operations (AND, OR, NOT, XOR and MOV) and 5 registers is 85. NOT has,
with one common input/output register, 5 register combinations while the other 4
have each 4 - 5 combinations. This branching factor makes searches with multiple
iterations practically impossible. A rule set has been designed that sorts out nodes
which will not lead to valid solutions or redundant nodes. The basis of the rules has
been presented by D. A. Osvik [24]. The rules include checks that no uninitialised
registers are read, that no register is overwritten without being read and that no
register is negated twice. For these rules, the status of the register can have four
different values: uninitialised, read, written, inverted. In every node, the status
is checked and updated according to the operation. Another constraint is that no
information is lost during the operations. We are only considering invertible s-boxes,
those require that every input maps to a distinct output value. The four bit input

12

Linear and affine equivalence algorithm

of the s-box can have 16 different values. During the simulation all 16 values are
stored bit sliced next to each other. Information is lost if the five registers do not
represent 16 different values. In this case, the s-box is not invertible any more. Lost
information can never be reconstructed again and there is no need to follow this
branch any further.

Nodes with the same register content will of course have the same child branches.
To avoid double nodes a cache is used. Every valid node is saved in the cache. If a
node is checked, its register content is looked up in the cache. Before the registers
are compared, they are sorted according to their value. For the s-box the order of the
registers is not important, only the content is of interest. Removing equal notes will
further decrease the branching factor. The implementation of the cache is discussed
in section 3.3.

Recalling the argumentation for the search strategies, saving all nodes contradicts
with the reasoning not to use breadth first search because of the memory requirements.
The important difference is that, while the breadth first search depends on the this
storage and can not continue after the memory limit has been exceeded, the cache is
only a feature for the iterative deepening depth first search in order to reduce the
branching factor. When the simulation runs out of memory, the insertion of elements
to the cache is suspended. But the search can continue and meanwhile benefit from
the elements stored in the cache. Nodes are still looked up in the cache even though
it is not updated any more. This reduces the branching factor although less than
the active cache. Next to the cache, there is a cycle check which checks for repeating
elements only among all of the node’s parents. This check has only limited memory
requirements. The check prevents from creating loops in the tree even though the
cache insertion has been suspended.

3.2 Linear and affine equivalence algorithm

The other central part of the program is the equivalence algorithm. While the
search algorithm is searching through all, or a reduced set, of instruction register
combinations, this algorithm has to evaluate if a newly found node is actually a
member of a new class of s-boxes.

In this section, we first introduce the linear equivalence algorithm. Then, the
classification of s-boxes in affine equivalence classes is explained. There are two
definitions for representatives used in this thesis, one is used for the most efficient
s-box of class as defined in definition 4.1. The equivalence algorithms use the
lexicographically smallest s-box as representative. The second definition (definition
3.1) is used for compatibility with [17].

Definition 3.1 The representative R is defined as being the lexicographically smallest
s-box of the class. This is valid for both the affine and the linear equivalence.

The linear equivalence algorithm determines from any given s-boxes its linear repre-
sentative according to the definition 3.1. The algorithm is built after the concept of
C. De Canniére.

13

3. ALGORITHMS

The basic concept is to build the representative step by step such that it becomes
lexicographically minimal. The algorithm has to find linear mappings A and B in
order to transform the input s-box into a lexicographical smallest representative
R = B 10850 A, see figure 2.2 (without the affine constants). By selecting the
smallest possible value for the representative step by step it is guaranteed that the
outcome will be the lexicographically smallest. An example is given in figure 3.2.
When the algorithm starts one point is always defined in the linear mappings. Any
linear operation has to map 0 — 0. In the example, the s-box maps 0 to 1. The
minimal value that can be be assigned to R(0) is thus 1. The linear mapping B
can not map 0 to 1. The algorithms continues round by round. In some cases the
algorithm does not have a unique solution for a round, as in the third round of the
example. In those situations the algorithm has to perform a guess. In order to find
the smallest solution all possible values for the guess have to be tried. We omit
further details and refer to [17].

To determine if two s-boxes, e.g., S and T, are affine equivalent one has to find
affine mappings that transform one s-box into the other. A straight forward way
is to compare the linear representatives for every combination of input and output
affine constants with the linear representative of the other s-box. This results in
256 calls of the linear equivalence algorithm. To reduce the number of calls of the
linear equivalence algorithm one can compare the 16 representatives for input affine
constants for one s-box with the linear representatives of the other s-box with output
affine constants as shown in the formulas 3.1 and 3.2. If any of the representatives
S, is matching with one of T}, for all a and b the s-boxes are affine equivalent.

Sq = lin. representative[S(z @ a)] (3.1)

Ty = lin. representative[T () & b] (3.2)

A s-box is represented by 4 registers. When the search reaches a new node it
tests 4 combinations of 4 out of 5 registers for representing a new affine equivalence
class. The combination, in which the last changed register is excluded, is neglected.
Only one register changed since the last iteration. The s-box which has been chosen
without the recently changed register has thus already been check in the parent node.
This s-box existed already before. Every combination is treated independently as a
candidate for representing a new class. For every candidate the linear representatives
for all affine constants at the output, as in formula 3.2, are computed. If any of
them matches with a stored representative of previously found s-boxes, it is not
representing a new class and to be neglected. If it is not matching a new class has
been found and 16 new values calculated according to formula 3.1 are added to the
storage.

3.3 Data structures and memory management

This section focuses on the data structure of the cache. This data structure is impor-
tant because it is responsible for most of the program’s memory usage. Simulations

14

Data structures and memory management

z’ |01 2345678 9ABCDESTF
Siz) |1 B9 CD 6 F 3E S8 7 4425 0
’ S /

T — — Y —y
S
0—0 —_— 11
S——l
1-F =2 — 00

guess — 2 — 2 _ 5 9«2
35D —2 264
S—l
4 -9 ————— 8«3
5—-6 -5 F< 38
6—2B — > 40E
z |01 23456789 ABCDETF

R(z) |1 0 2 4 3 8 E

FIGURE 3.2: Example of the linear equivalence algorithm

15

3. ALGORITHMS

showed that it will not be possible to keep saving nodes in the cache throughout
the whole search. Nevertheless, the size of the cache is expected to exceed several
dozens of gigabytes. To access such large amounts of data efficiently, different data
structures are required. The following data structures have been considered:

e binary trees
e hash tables

In a binary tree, every node can have two child nodes. The item to add or retrieve
is compared with the top node first. Depending on the outcome the item if forwarded
to one of the child nodes. This is continued until the requested node has been found,
or the end of a branch has been reached where the new item will be stored. Every
cache access has complexity of O(log N) (with N the number of elements in the tree),
only if the cache is balanced. This is one of the major problems of binary trees. If
one keeps adding non random items to the tree, it will, with a high probability, not
stay balanced. This means that certain accesses will have a higher complexity than
O(log N). In the worst case all nodes can be in one single branch and the complexity
increases to O(N). To prevent this, some so called self balancing trees contain a
balancing algorithm. Known examples are the red-black tree [4] and the AVL tree
[14]. For the scenario of the cache, where the cache queries significantly outnumber
the cache insertion, the AVL tree outperforms the red-black tree. It has more strict
rules for re-balancing, which adds extra operations for insertions but speeds up the
queries [26]. The major disadvantage of all tree data structure is the need of extra
data to refer to the child nodes. For self balancing, even more pointers are required
for the balancing algorithm. Especially on a 64-bit architecture, these pointers can
cause a significant memory overhead.

The other option that is considered are hash tables. The main advantage of hash
tables is that the access time is completely independent of the number of nodes.
From every item, a key will be calculated with a hash function. This key is then used
directly or indirectly as a memory address. This method also reduces the memory
overhead because all the items in the data structure are completely independent and
do not need to point to each other. The usage of hash table does not completely solve
the problem of memory inefficiency. Using the hash as an address does not guarantee
that all addresses are used. If two items have the same hash, only the first one will be
saved in the table. For the search algorithm, the problem is limited. If a node could
not be added to the cache, there is a high probability that its child nodes will then
be added to the cache. This will prevent the search from expanding an equivalent
branch. The other branch may just be kept one iteration longer. Towards memory
saturation it becomes more probable that some entries stay unoccupied, while some
items can not be saved. One possibility to improve this would to use a combination
of data structures, e.g., using a hash key to distribute the items over many small,
for example, linked lists. An alternative would be a so called cuckoo table. Those
tables use multiple different hash function to create keys. If a element A collides
with the previously stored element B, an alternative key of B is calculated and the
element is moved to its new position such that A can be stored where it was initially

16

Conclusion

meant to be stored. This reordering of elements is continued until one alternative
key points to an empty memory location. This increases the memory efficiency but
also increases the computational effort if many keys have to be calculated and many
elements have to be moved.

Taking the different properties of the data structures into account, the AVL tree
has been chosen. The limitations of the hash table caused by collisions were considered
more important than the loss of memory due to overhead. The implementation from
the Ubuntu source has been chosen [7]. This library has been chosen because its
source is publicly available. The library can be added to the source of the program
and the program can be compiled on multiple machines without making sure that
the correct library binaries are installed. An alternative would have been the AVL
library from the GNU project [25]. The GNU project’s library is a collection of
implementations of many different data structures, it was preferred to limit the code
size for better maintenance and debugging.

There was another approach considered for the case of porting the algorithm to
a computer cluster rather than on a single machine. The memory management will
be different significantly on a cluster compared to a multi core architecture. While
in a multi processor core architecture, all processors share the same main memory,
every node in cluster has its own main memory, that can not directly be accessed
by the other nodes. A possible cluster for this work would be the VSC (Vlaams
Supercomputer Centrum). Except for a limited amount of so called ‘fat’ nodes, the
main memory is limited to 8 or 24 GB [23]. In such a scenario, a distributed data
structure enables the use of a large cache. The concept for such a data structure
could be a binary tree in every node and use a hash function to distribute the items
over the nodes. Further explanation about the parallelisation of the algorithm can
be found in section 4.3.

3.4 Conclusion

In this chapter the basic algorithms used for the simulation have been introduced.
The decision for the different algorithms and libraries have been argued. For the data
structure of the cache, the decision fell on the AVL tree. The decisions gave the basis
to start the development of the software tool. Some of the algorithms will evolve,
be optimised or even replaced during the phase of implementation. The following
chapter gives an overview of those changes.

17

Chapter 4

Parallelisation and performance

This chapter shows how the different algorithms introduced in the previous chapter
can be optimised to increase the overall performance. The chapter focuses on
algorithm-level optimisation, but also includes code-level optimisation.

4.1 Reducing the branching factor

In the last chapter, we introduced the search algorithm. The most important strategy
during the optimisation is to reduce the branching factor. This improves the overall
speed exponentially while with code optimisation only a linear improvement can be
achieved. In the previous chapter, we proposed a set of rules to reduce the branching
factor. In this section, we develop a new caching approach which will achieve a much
more significant reduction of the branch number.

The original caching algorithm only dismissed a node if its register content was
exactly the same after sorting the registers. The new algorithm uses the same data
structure, but verifies if the current node is affine equivalent to one of the previous
nodes. The algorithm is inspired by the equivalence algorithm introduced in section
3.2, but there are a few significant changes.

While the general equivalence algorithm operates on 4 x 4-bit s-boxes, the
equivalence algorithm for caching receives 5 output registers as input. This can be
interpreted as a 4 x 5-bit s-box. The algorithm is based on the property that if two
not completely finished s-boxes are equivalent, all the s-boxes that result from their
child nodes will be equivalent to an s-box of the other branch. In order to visualise
the equivalence relation between unfinished s-boxes, one could think of a variant of
figure 2.2 where the lower half of the schematic has been cut away from both s-boxes.
It is clear that if two nodes are equal, their sub-trees will be equal too. If there exists
an affine input transformation that makes two nodes equal, then it can be shown
that the sub-trees continue to be equal apart from these affine operations. If an
affine operation is the only difference between two s-boxes, they will be member of
the same affine equivalence class.

The following explanation focuses on the affine equivalence. The linear equivalence
works equivalently, just without the addition of the constant. The linear mapping

19

4. PARALLELISATION AND PERFORMANCE

54 |I3

Bit permutation
54

FIGURE 4.1: Schematic of the modified affine equivalence relationship used in the
caching algorithm

at the input can be any linear transformations, as was the case for the normal
equivalence algorithm. The linear mapping at the output can not be applied because
the s-box has not been completed yet, and therefore the output of the s-box has not
been reached yet. One special type of linear transforms, bit permutations, can still
be applied. Taking into account bit permutations is equivalent to sorting, which
was already applied in the first version of the caching algorithm (see section 3.1).
This is always valid because changing the order of the registers does not change
anything about the content. Throughout the computation of the s-box, we are only
interested in the different values in the register, not in which register these values are
stored. The addition of constants is also limited to the input side. There is no such
mapping at the output for the same reason as for the linear mapping. Figure 4.1
shows the schematic of the equivalence. The check for complete s-boxes is performed
when checking if the s-box represents a new class. It is only at this stage that affine
mappings are applied both to the input and to the output.

Figure 4.2 shows the relationship between the number of nodes and the number
of iterations. The data points from the basic and the linear equivalence caching are
obtained from preliminary test runs, the affine equivalence has been updated during
the later simulations. It can be seen that the growth of the tree behaves nearly
exponentially. While the normal caching has a branching factor between 10 and
11, the advanced caching has branching factors around 7 for linear equivalence and
between 6.4 and 7 for the affine equivalence. The branching factor is even slowly
decreasing when advancing into the tree. To decide which algorithm is optimal, one
has to consider several properties:

e computational effort per node

e reduction of future computational effort

20

Expected amount of nodes

1e+09 ¢ T T T T T

1e+08

1e+07

1e+06 -

100000

10000

Number of nodes

1000

100

_ basic caching ---w---7

linear equivaience s«

affine equivalence =it
1

o
o
.
.
.
o

1 I = 1 1 1
2 4 6 8 10 12
Depth of the search

FI1GURE 4.2: Comparing the different equivalence algorithms for the cache: number
of nodes vs. the depth of the search

e reduction of memory usage

Using the affine equivalence reduces the branching factor and consequently also
the memory usage. It also reduces the future computational effort because there
will be fewer nodes that have to be checked. At the same time, the computational
effort per node will increase. The effort to calculate the 16 lexicographically smallest
representatives for the different affine constants is not 16 times larger than calculating
a single one. Details about the optimisation are given in section 4.4.1. The trade-off
also depends on the distribution of the classes in the tree. If all classes have a
relatively low implementation cost, the memory would not play an important role.
It is decided to use the affine equivalence because it causes less cache memory at
the expense of calculation effort. Creating less nodes per iteration enables to add
elements to the cache for longer time. Without new cache elements, the branching
factor increases significantly and the computational effort would be even larger.

4.2 Expected amount of nodes

In [17] an approximative formula for the number of classes is introduced. The
approximation is defined by the number of s-boxes divided by the size of the linear
and affine group at the input and at the output. The approximation does not take

21

4, PARALLELISATION AND PERFORMANCE

into account that the number of elements in a class is not always equal to the number
of all possible linear and affine mappings. It is an estimation formula to find the
order of magnitude. Applying the approximation to affine equivalence classes this
results in 201 instead of 302 classes. The number of nodes for the original algorithm
with only sorting the register is calculated bellow:

32!
b : =2
#sboxes 16
#permutation transforms: Bprm = 5!
S
#classes: n = rz 2665
Bp'rm

After applying the modified affine equivalence algorithm the number of nodes can be
calculated as below:

32!
#sboxes: = 16l
#alffine transforms: A=16-(16—-1)-(16 —2)- (16 —4) - (16 — 8)
#permuation transforms: Bprm = 5!
S
classes: n=—— a 2182
A Bprm

Every node fills at least 28 bytes needed for a data structure and another 53
bytes are required by the AVL tree node. Extra memory required by the dynamically
allocated memory to store the nodes program code or the wasted memory due to
memory alignment is neglected. This results in memory requirements that can
not be provided. Two reasons make this approach possible nevertheless. First,
not the complete space of s-boxes has to be searched to find only the optimal
implementation per class. Second, even if the caching has filled all available memory,
the search algorithm can still continue without adding new elements. This will
cause the branching factor to increase, resulting in an even larger node count than
the previously calculated 282, The cache in the actual implementation can hold
approximately one out of one million nodes.

4.3 Parallelisation

Another major improvement of the performance can be achieved by parallelisation.
The parallel algorithm can benefit from multi-processor architectures. Two possible
parallelisation approaches are considered: The first approach keeps the main program
sequential. The program is then supported by several worker threads. These workers
can perform two types of tasks. The first one is to check if a newly expanded node
is not violating any of the earlier defined rules for reducing the branching factor.
The other task checks if the register state of a node represents a new class. The
sequential implementation of the program used a recursive approach for the search.
For a more systematic access to variables within the different nodes, the recursion
can be ‘unrolled’. The data structure for the temporary data is changed from the

22

Parallelisation

Y 0161010
g G

A ofe)o]e
3 C

22

0 A (A)

FIGURE 4.3: Example of a node expansion

tunction stack used by the recursion to a manual stack implemented as an array
of structs with an index variable as address. The advantage of this change is that
the data in the stack can be easily accessed to update the results from the worker
threads, which have their own independent function stack.

Figure 4.3 shows an example graph with branching factor 4 and the corresponding
stack on the left. In the first iteration, node A is expanded and nodes B to E are
added to the stack (addresses 1 to 4). After the first node has been expanded, the
main thread has to wait for the node B to be checked. While it is waiting, it services
the worker threads. During the servicing, the main thread checks if a thread is idle.
If an idle thread is found, a new job will be assigned. The servicing is expected to
react fast because the task that the main thread has to perform is rather small, and
it is guaranteed that the threads get serviced in regular intervals. If not all of the
worker threads can be kept busy, the efficiency of the program drops. Increasing
the number of threads beyond the number of available CPU cores, and thus having
several threads that share a single core, would reduce the overhead. Workers that
have finished their task will go into sleeping mode and give the core to another
worker. This way, part of the servicing task would be done by the operating system’s
scheduler. Depending on the number of workers, several nodes are handled in parallel.
The higher the stack address, the earlier the node will be expanded and the higher
the priority for getting assigned to a worker during the servicing. For an efficient
servicing of the threads, we will use a max heap data structure. The address of every
newly created node is added to the data structure by the main thread. The data
structure automatically orders the elements by their size. In the servicing routine,
the top element of the data structures, which is by definition always the largest
element in the structure, is taken and passed to the idle worker thread. A problem
that is generally implied by any parallelisation, is that the calculations and thus
the arrival of results may be out of order. If the cache queries are out of order, the
outcome of the program is no longer deterministic but depends on the scheduling.

As an example, let us assume that node B in figure 4.3 is equivalent to node E.
Depending on the scheduling, either of these equivalent nodes might be expanded
first, causing the other one to be dismissed. This lack of determinism does not
prevent the algorithm from finding a minimal implementation for each equivalence
class. But if several minimal implementations exist for a given class, then it is not
possible to predict which one will be found. In order to avoid this, we will make

23

4. PARALLELISATION AND PERFORMANCE

the search deterministic such that each execution of the parallel algorithm always
returns the exact same results as what the sequential program would have produced.

There are two reasons why determinism is a desirable feature. First, this property
has clear advantages when it comes to debugging. Second, it allows to precisely
define the properties of the representatives returned by the simulation:

Definition 4.1 The representative is the s-boz of an affine equivalence class with the
least implementation cost and among equally costly, the first sorted by the assembly
code.

The solution for determinism is to mark cache entries as provisional. If a worker
thread tries to insert an item into the cache that is already existing, the procedure
depends on the provisional flag. If the colliding cache entry is not marked as
provisional, a redundant node has been found and can be dismissed. If the cache
element is marked as provisional the stack addresses (the stack addresses have to
be saved with every cache element) have to be compared. The item with the higher
stack address has priority. The new element will either be replaced or dismissed.
In the first case it has to be communicated that the node that created the cache
entry should be expanded. Marking the cache entries as non-provisional is done in
the main thread. The provisional flag is cleared when the node is expanded. The
main thread is still searching through the tree as in the sequential program, which
guarantees that no other node could replace the item after it has been marked as
non-provisional.

The second task of the threads, which is to analyse if a node represents a new class,
is performed by the same workers. The out-of-order execution has the same effect as
for the first task: It can interfere with the determinism and in some cases even lead
to wrong results if jobs of equivalent s-boxes with different cost are interchanged.
For this type of task, we decide to avoid out-of-order execution rather than taking
actions to handle it. First, it is of interest to communicate any new found class
immediately. The actions used for the caching only work because the data can be
updated after it has been initially written. Second, there are far more jobs to check
nodes for passing the rules than to check for new classes. We therefore only allow
one thread to perform jobs of the second type. To guarantee that the search does
not generate more tasks of type two than one thread can handle, the main thread
waits for such tasks to finish before continuing. Despite this design decision, the code
would still be able to service multiple type-two jobs at a time. A FIFO queue is used
to store the jobs to be assigned. The initial assumption was that the waiting will
not be lost because the main thread will meanwhile service the other worker threads
with jobs of the first type. In early implementations this assumption was valid.

Another way of parallelising the algorithm would be to split the tree after several
iterations and to give every thread another branch to search. When scaling, this
approach is not limited by a single servicing thread, but this comes at the expense
of a higher complexity. There are two main risks that arise from this parallelisation
approach. First, the different branches are not necessarily balanced. This means
that the different workers have to perform tasks with different calculation efforts. If

24

Code level optimisation

no other, more complex, precautions for servicing the threads are taken, the threads
will have to wait for each other before another iteration can be started. Second, the
nodes are not equally distributed within the thread. This, together with the varying
execution time-of the check function, causes a more complex out-of-order arrival of
items for the cache.

The first method with a sequential main algorithm and supporting worker threads
for extensive computational task has been chosen for the implementation. Problems
with the efficiency of the parallelised algorithm occurred after the code-level optimi-
sation introduced in section 4.4. Reducing the execution time of the tasks for the
worker threads increases the relative servicing overhead. This, in combination with
the increased waiting time for the jobs of type two, prevents the main thread from
keeping eight cores serviced while waiting for the type-two job. On the computer
used for the tests, only between three and four cores can be kept busy. Allowing
type-two jobs to be performed out of order would only solve the problem partially.
Servicing and expansion in one thread will stay the limiting factor of this approach.
The second approach for parallelisation should be considered again. That approach
uses full parallelism and is thus not limited by a single servicing thread.

4.4 Code level optimisation

The program code has been revised for efficiency during the work. In this section,
the most significant changes to increase the execution speed are introduced. The
work has been concentrated on the most crucial parts of the program. The two
equivalence algorithms are responsible for more than 90% of the execution time and
are discussed in detail in this section.

4.4.1 Caching equivalence

This algorithm has highest priority for optimisation. It contains very computationally
intensive parts and it is also executed multiple times for every node. The first step
when optimising the algorithm (see section 4.1) is to allow the 16 executions of the
linear equivalence algorithm to benefit from each other. The aim of the algorithm
is to find the lexicographically smallest of the 16 lookup tables. There is no need
to calculate all of them, as done for the basic equivalence algorithm with affine
mappings on both sides. Within a single execution, the initial algorithm aborts the
calculations for a given guess as soon as it is clear that the result will not lead to
the lexicographically smallest representative. This feature can be extended to span
all 16 executions, by aborting each of them as soon as the resulting lookup table is
larger than the previous ones.

The other improvement concerns the function to determine the next value of
the output linear mapping. This mapping has to be a permutation of the registers.
Given an input value, the function returns the smallest bit permutation, taking the
previously assigned permutation into account. The first version used a 2 x 5 element
array, which represents the 5 registers at the two sides of the permutation. The
registers are grouped and then tagged. Equal tags represent how a bit can be moved

25

4. PARALLELISATION AND PERFORMANCE

1) initial B_prm = {0x1F,0,0,0,0} [010] 0]
2) input = 6 2

o3 [0]o]o]
4) B_prm = {0x6,0,0x19,0,0} 191
0]1]o0]

5) input = 0xB \
6) 0xB— 0xD "“‘Aﬁ
7) B_prm = {0x2,0x4,0x9,0,0x10} L0 0]

FIGURE 4.4: Example of the algorithm to find the smallest bit permutation

by the permutation. The algorithm starts by assigning the same label to all elements.
The linear mapping is defined as soon as 5 different labels are present, and the new
location of every bit is defined. The problem of this algorithm is that the labels of all
registers have to be checked several times per execution. This is the main bottleneck.
This algorithm has been replaced by a more efficient one. The new algorithm requires
two pre-calculated tables which defines, for every of the 32 5-bit values, the smallest
value that can be created by the same number of ‘1’-bits and the number of ‘1’-bits in
the input. The permutation is now represented by an one-dimensional array, called
B_prm. This array containes bit masks. The index of the array indicates the most
right position the bits that are selected by a mask can be moved. If now new value
has to be permuted to its smallest permutation its overlap with the every value in
the mappings array is calculated and shifted according to the index of the array.
Combining these intermediate values results in the smallest permutation. In a next
step the mapping has to be updated. An example is illustrated in figure 4.4. The
resulting speed-up of the algorithm can not the calculated in a general way because
it depends on the inputs. Instead, the efficiency improvement has been evaluated by
its impact on the search. With a profiler the execution time of a search depth limit
of 5 has been measured. While the original takes about 189 s the optimised takes
only 16s.

4.4.2 Linear equivalence

When initially implementing the algorithm, the theory about the algorithm was
followed closely. Most variables and data structures were inspired by the pseudo
code from [17]. During the analysis, suboptimal implementation decisions have been
found. Because of this, the algorithm has been redesigned'. The most important
changes are summarised below:

e As for the modified affine equivalence algorithm, the handling of the guesses
can be improved. If a guess will lead to an s-box that is known not to be
lexicographically minimal, the calculations for that guess do not have to be
completed. The efficiency gain of this change is data dependent. The earlier

1Phe redesign has been closely followed the advises from C. De Canniére

26

Checkpointing

the lexicographically smallest representation is found, the more guesses can be
skipped.

e The data structures from the initial algorithm, including mathematical groups,
have been implemented in the first version. Some of the groups are not necessary
and others can be replaced by more efficient implementations. Rather than
searching the values in the groups, they can be calculated in a more efficient
way. Gaussian elimination is used when looking for the input of the linear
mapping B (z — y) for which the representative becomes minimal. It checks
if the requested y is already defined by a linear combination of previously
mapped values. If so, the input value can simply be calculated using this linear
combination. If the requested output is linearly independent, then the smallest
remaining linear independent value is the solution.

The total speed-up has been measured by running 10,000 linear representative
calculations with randomly generated s-boxes. While the initial algorithm takes
about 69us per call, the optimised algorithm’s averaged execution time can be
reduced to 7us. This equals to a factor of 9.8.

4.5 Checkpointing

Even with all the performance enhancements introduced in this chapter the search
may take several weeks to complete. A system crash would require a simulation
restart in order to rebuild the cache. All the calculation effort of the previous
simulation would be lost. Therefore a checkpointing system has been implemented.
The checkpointing system enables the program to save its state on the hard disk,
and recover from it after a system failure. The check points consist of two parts.
One part is continuously updated; the other is saved at regular intervals.

All data, except the cache, is saved in regular intervals, by default every two
hours. The file for the cache is called suspend_cache and the other file is called
suspend_all. The second file includes:

o the stack

e the saved lexicographically smallest representatives of already found classes
e the limit of the iterative deepening DFS

e the number of elements in the cache

e the number of nodes (can vary from the number of element in the cache if
caching is deactivated because of limited RAM resources)

e the number of classes found

The data structures, containing open jobs for the threads to do, are not saved. The
main thread is paused and the worker threads get serviced, until those queues are

27

4. PARALLELISATION AND PERFORMANCE

emptied before creating a checkpoint. This brings the program into a well defined
state.

For the cache entries, another way of scheduling the checkpointing has been
chosen. Saving the whole cache of several gigabytes at once would take a large
amount of time. It is also not optimal not to save any data while the program is
running and leaving the I/O buses idle, while a little later a large writing task slows
down the whole program because of the delays of the I/O bus. To avoid this, the
cache entries are saved in a file each time a value has been labelled as non-provisional.
At this moment it is sure that the entry will never change again. When recovering
the data, the two files may not be synchronised. After creating a check point the file
suspend_cache is still updated, and contains new values by the time the program is
terminated. For this reason, the number of cache elements is saved in suspend_all.
When reading the cache, only the number of cache elements defined in the checkpoint
are read, and the rest of the content in suspend_cache will be discarded. This
results in a loss of part of the data but the loss is limited by the checkpointing
interval.

4.6 Conclusion

Thanks to the optimisation, the total execution time was reduced significantly. The
already reduced branching factor of ten could be reduced below seven by more
advanced caching methods. With code level optimisations, the execution times of
the most crucial algorithms have been improved by approximately a factor of ten.
Additionally, two approaches to benefit from multi-core architectures and computer
clusters have been introduced. The limits of the parallelisation approach have been
shown and techniques to further improve the program have been presented. Finally,
the reliability against system failures has been enhanced with the checkpointing
algorithm.

28

Chapter 5

Results

In the previous chapters we have introduced the algorithms and tools to search for
efficient implementations. In this chapter we present the outcome of the search.

In the first section of this chapter, the best implementations for each class that
have been found so far are presented and the outcome are analysed. In section 5.2,
we discuss the observation that none of the optimal implementations contains a
NOT instruction. The following section 5.3 compares the found representatives with
s-boxes used in known primitives such as Serpent, Noekeon and Luffa. In section 5.4,
we give an explanation of how to use the table to design new primitives.

5.1 The most efficient implementations

In this section, we give an overview of all optimal implementations found during the
simulations. The simulation time is difficult to guess and the simulation takes longer
than we expected. At the time of writing, 272 of the 302 classes have been found.
Nevertheless, many important equivalence classes are covered and other interesting
properties are discovered. The found classes cover 90% of all s-boxes. The results of
the simulation are a table containing the representatives, according to definition 4.1.
The results are listed in the tables 5.3-5.9. The entries are sorted according to the
following conditions:

1. The non-linear properties: The linear and differential properties have been
combined. In order to take the different attack complexities into account,
the linear correlations have been squared before merging the two tables. The
columns of the tables have been sorted according to this value, and summed
up in case of equality. This merged table was then used to sort the s-boxes.

2. The s-box classes for which an optimal implementation has been found, have a
higher priority than classes with unknown representative.

3. The classes with an optimal implementation have then been sorted according
to the implementation cost.

29

5. RESULTS

4. The ranking of s-box classes in the thesis of C. De Canniére has been used as
sorting condition for classes for which both the non-linear properties and the
implementation cost are the same [17].

Figure 5.1 shows the relationship between the figure of merit and the implemen-
tation cost. The size of the points indicates the number of classes that have exactly
the same figure of merit and implementation cost. The figure of merit is calculated
as follows:

2
fom = Z (c - logy %) - LIN(c) + Zp . logQ% - DIFF(p) (5.1)
c P
where LIN and DIFF are the histograms of the linear approximation table 2.4 and
the difference distribution table 2.2. The variables ¢ and p are the correlation and
probability for which the histograms are defined.

This figure of merit takes a weighted average over the different properties. For
some attacks, the existence of single extreme values may cause security flaws. But
the figure of merit gives an indication of the non-linearity introduced by an s-box.

The general tendency is that the higher the non-linear requirements are, the more
cycles are needed. Nevertheless, not all representatives are on the Pareto optimum.
Deviations from the general trend can also be observed for other properties, such
as the maximum linear probability and the maximum differential probability. The
tables 5.1 and 5.2 show the relationship between the implementation cost and the
MDP and the MLP. These variations can be very useful for the design of ciphers.
When designing ciphers there is a trade-off between the non-linear properties and
the implementation cost of the s-boxes. The complexity of an attack can either be
increased by choosing s-boxes that have properties as close as possible to the ideal
s-box, or by increasing the number of rounds.

In appendix B we present a table with additional properties. An interesting
property is the branch number of the representatives. For all classes found so far it
is the minimal possible value of 2. The maximum algebraic degree is also listed. It is
important to remember that the algebraic degree of the other output bits may vary.

When choosing a representative, the designer should be aware of the fact that
the linear layer can change the branch number and has limited influence on the

TABLE 5.1: Minimum cost required to implement an s-box with a given MLP

MLP =1/2+ | 1/8 1/4 3/8 1/2
|e| 1/4 1/2 3/4 1
min. cost I - 9 9 0

TABLE 5.2: Minimum cost required to implement an s-box with a given MDP

MDP |1/8 1/4 3/8 1/2 5/8 3/4 7/8 1
min. cost | - 9 10 6 9 6 - 0

30

Affine equivalence and the NOT instructions

180 T T T T T T

140 |-

120

+ + + 4+

+4+ +++

100

+
!

FOM

80 - i

0 | I 1 1 ! 1
0 2 4 6 8 10 12 14

Number of instructions

FIGURE 5.1: The relationship between the figure of merit and the implementation
cost

algebraic degree of the different output bits. It can merge or cancel out monomials
by performing additions between the output bits. However, it can never create new
monomials of higher degree than the maximum degree present. Referring to [12] it is
important to consider that not only the maximum degree but also the amount and
distribution of the monomials is of importance.

5.2 Affine equivalence and the NOT instructions

When analysing the results it has been discovered, that not a single implementation
makes use of the NOT instruction. This discovery leads to an important property:
the lack of inverters implies the existence of the fixed point S(0) = 0. Not all
representatives have been found by the simulation so far. Therefore, the implicit
proof that all classes have an optimal implementation without NOT instruction is not
complete and thus not valid. We would like to introduce a hypothesis: We conjecture
that all classes contain at least one s-box that has minimal implementation cost and
has the fixed point S(0) = 0.

The hypothesis can be verified by completing the search or by a mathematical
proof. The existence of optimal implementations with other fixed points or without
fixed points could not be shown with this simulation and can thus not be excluded.

31

5. REsuLTS

For class 13, it is interesting to notice that the best implementation without fixed
point found by [29] needs one more instruction than representative with fixed point.
The search for the other s-box was slightly different. Parallelism has been taken into
account such that the 10 instructions can be executed in 6 cycles. For an example
please refer to section 5.3.2.

In the following discussion we introduce an argumentation why the NOT instruc-
tion is not needed.

AUB =
ANB =

ol

N
U

SNESS

(5.2)

For the argumentation we will treat two types of implementations separately. The
first type resembles a round of an unbalanced Feistel network [27]. The non-linear
combination of a subset of the registers (comparable to one side of the Feistel cipher)
is combined by a binary addition with another register (comparable to the other
side). The non-linear network is limited to make use of only one internal register. All
s-boxes based on this type of building blocks are guaranteed to be invertible. The
second type includes all other constructions. The difficulty of this type is that many
combinations of this type will result in non-invertible s-boxes [29]. Nevertheless,
there are invertible s-boxes and even optimal implementations of this type.

Recalling the affine equivalence, it can be shown that every NOT instruction that
can be moved to the input or output, can also be removed. The building blocks of
type 1 s-boxes guarantee that the De Morgan’s transform (see equation 5.2) can move
any NOT instruction inside the s-box to either of the ends, where it can be discarded
because of the affine mapping. This argumentation is only valid for architectures
with only one spare register. Having only one register that can be biased, it is not
possible to create a ‘De Morgan loop’. This is only valid for type 1 s-boxes. In De
Morgan loops, the De Morgan transformation will not be able to move all NOT
instructions to either end of the s-box. At least one NOT instruction will always
remain inside the loop. Figure 5.2 shows an example of such a loop.

No such closed argumentation has been found for type two. The examples that
have been analysed do not have an isolated De Morgan loop. They contain of
similar structures, but some of the intermediate values inside the loop are linearly
combined with other registers. These linear combinations seem to allow to transform
any inserted NO'T' instruction to one of the ends of the s-box. An example is the
representative of class 115 in figure 5.3. It can not be excluded that there does not
exist any s-box with minimal implementation cost containing a De Morgan loop. But
it has been shown that among the found representatives there exist results without
them.

We remain with this argumentation. It does not prove, that there is not an
optimal implementation with NOT instructions, but it proves (only if all classes
have been found), that there is for every class at least one optimal implementation
without NOT instruction. We leave more detailed investigations and a formal proof
for further research.

32

Comparison with literature

-

A %4

b
FIGURE 5.2: Example of a s-box with a non-resolvable De Morgan loop

5.3 Comparison with literature

5.3.1 Serpent

The following s-box classes of Serpent have been found: 9 (Sy, Ss), 10 (S; L Sy 1),
14 (S, S1), 15 (So, S71), 16 (S, Sy, Se, Sg'). The class of S3, Sy, Sy and S; !
has not been found yet. Five of the six s-boxes are members of the most efficient
classes out of the 16 classes with MDP =1/4 and MLP =1/2 + 1/4, see table 5.3.
The s-box whose representative has not been found, can be classified according to its
properties. It is in class 12. This means that none of the s-boxes is member of the
most efficient class 13.

None of the s-boxes used in Serpent is a most efficient representative as presented
in the tables 5.3-5.9. The reason are the variant properties of a class. All representa-
tives fail the second part of condition 1 (see figure 5.4). The MDP is invariant for
a class and consequently fulfils the conditions. The position of the elements in the
differential distribution table is variant. The condition further requires a probability
of zero that a one bit input difference leads to a one bit output difference. This is
just another way to define a bitwise branch number to be larger than 2. None of
the representatives of classes 9, 10, 15 and 16 passes this condition. By knowing the
implementation costs of a representative, one can not make statements about the
implementation costs of other members of that class. It is thus not possible to define
generally how many instructions have to be added, in order to fulfil other variant
requirements.

5.3.2 Luffa

The Luffa s-box S = 0xde015a76b39c£824 is of the same class as Sy, 5’2_1, Sg and
Sg ! from Serpent [20]. The representative failed again as a candidate because of

33

5. RESsuULTS

Fan
A

FanY
L/

D
\V

D
N/

Fan
U

v

FiGURE 5.3: Example of a s-box of type 2

1. each differential characteristic has a probability of at most 1/4, and a one-bit
input difference will never lead to a one-bit output difference

2. each linear characteristic has a probability in the range 1/2 4 1/4, and a linear
relation between one single bit in the input and one single bit in the output
has a probability in the range 1/2 +1/8

3. the non-linear order of the output bits as a function of the input bits is the
maximum, namely 3.

FI1GURE 5.4: The s-box constraints of Serpent [1]

34

Comparison with literature

b

8
LTS

(b) S-box class 13

(a) ‘smallest s-box ever’ by Watanabe

FIGURE 5.5: Comparing ‘smallest s-box ever’ from Luffa with the equivalent found
by us

variant properties. The Luffa specifications do not allow fixed points and require
that every output bit has a degree of 3.

Dai Watanabe claims in [29] that he found the ‘smallest s-box ever’ with the
optimal MLP of 1/2+1/4, MDP of 1/4 and no fixed point. Our research could verify
this claim. Allowing to have a fixed point results in a slightly different but equivalent
result. The s-box found by Watanabe is shown in figure 5.5(a). The smallest s-box
with the same properties, except for the fixed point, found by our search is member
of the same equivalence class, see figure 5.5(b).

5.3.3 Noekeon

Noekeon is a block cipher based on a substitution/linear transformation network [9].
It shares similarities with the AES candidate Serpent. One important difference is
its symmetric structure, which nominates the cipher for efficient bit sliced implemen-
tation. The s-box used is member of class 13. The representative can not be used in
the cipher because Noekeon requires s-boxes that are involutions. An s-box is called
an involution if it is equal to its inverse, S = S~!. This property is variant within a
class. But not all classes can contain s-boxes with this property. The inverse of an
involution has to be member of the same class as the s-box because the inverse is
equal to the s-box. Therefore, a class can only contain involutions if its inverses are
member of the same class. In Appendix B we present an extended table of s-boxes
with some additional properties. The last row of this table refers to the class of the
inverses.

35

5. REsuLTS

5.4 A new design approach

When we compare our results to the s-boxes used in known primitives, it is usually
not possible to judge the decisions taken by the designers based on the outcome of
our simulations. The reason are the different design work-flows.

The sequence that is often used leaves the design of the s-box to the end. During
the design of the other components of the cipher, the specifications of the s-box
become more and more detailed.

When trying to replace one of the s-boxes with one of the most efficient rep-
resentatives, there is a high chance that the specifications are not fulfilled. The
specifications contain many properties that are variant in affine equivalence classes.
In our approach, the s-box is selected as a first step. The designer therefore fixes
only those properties that are invariant within the classes. The optimal s-box of a
class can be found with the tool presented in this thesis. In appendix A; we give the
optimal implementations for the instruction set defined in section 3.1.

In the next step, the variant properties are treated. The fact that these are
variant in affine equivalence classes, implies that these properties can also be affected
by the linear layer. The linear layer is then chosen such that the overall specifications
are fulfilled.

We expect that this alternative design methodology will result in efficient primi-
tives. Nevertheless, it is not proven that the most efficient members of the classes
will also lead to optimal ciphers.

5.5 Conclusion

In this chapter we presented the results of the simulation. Even though the simulation
has not finished yet, and there are still some representatives to be found, many
interesting properties have been extracted.

We could show that some properties that are variant throughout a class, are the
same for all representatives that have been found. Some of these properties may be
considered as weak or at least undesirable in some traditional design methodologies.
All of the found representatives found so far have a fixed point mapping zero to
zero. Furthermore, we could show that all of them have weak mixing properties, as
indicated by their branch number of 2.

For the implementations, we have shown that the minimal implementations (of
all s-box classes found) are not depending on the NOT instructions. This results in
the interesting property that all of them have a fixed point.

We finally presented a design strategy for cryptographic primitives. The design
strategy aims for highly efficient primitives by selecting optimal s-boxes and adapting
the linear layer in a next step to reach the desired properties.

36

Conclusion

TABLE 5.3: Implementations of the affine equivalence classes 1-50

Representative |¢|=1/4 1/2 3/4 1 p=1/8 1/4 3/8 1/2 5/8 3/4 7/8 1 cost
1 ? 120 30 0 1 9 15 0o 0 O 0 0 1 7
2 ? 120 30 0 1 9 15 0 0 0 0 0 1 ?
3 ? 120 30 0 1 90 15 0 0 0 0 0 1 7
4 ? 120 30 0 1 90 15 0 0 06 0 0 1 7
5 ? 120 30 0 1 90 15 0 0 0 0 o0 1 ?
6 ? 120 30 0 1 90 15 0 0 0 0 0 1 ?
7 ? 120 30 0 1 9 15 0 0 0 0 0 1 ?
8 ? 120 30 0 1 9 15 0 0 0 0 0 1 ?
9 0cabf9d4e8636172 112 32 0 1 8 18 0 0 0 0 0 1 11
10 01298bd7cfe654a3 112 32 0 1 8 18 0 0 0 0 0 1 12
11 0a43562edfb1c789 112 32 0 1 8 18 0 0 0 0 o0 1 13
12 ? 112 32 0 1 8 18 0 0 0 0 0 1 ?
13 086d5f7c4e2391ba 9% 36 0 1 2 24 0 0 0 0 0 1 9
14 086c7eb6£4d21b39%a 96 36 0 1 72 24 0 0 0 O O 1 10
15 0845d7fec6a391b2 96 36 0 1 72 24 0 0 0 O 0 1 10
16 01a2987cdef4563b 9% 36 0 1 7224 0 0 0 O 0 1 11
17 ? 120 30 0 1 9 12 1 0 0o 0 o0 1 7
18 02839bT7ecabbdf14 112 32 0 1 87 15 1 0 0 0 0 1 12
19 04afb6372e81c95d 112 32 0 1 8 15 1 0 0 0 0 1 12
20 02415f3e8bc6agd7 112 32 0 1 8 15 1 0 0 0 0 1 12
21 0251c6afd7984e3b 112 32 0 1 8 1 1 o0 0 o0 0 1 13
22 ? 112 32 0 1 § 15 1 0 0 0 0 1 ?
23 ? 120 30 0 1 9% 9 2 0 0O O o0 1 7
24 ? 120 30 0 1 % 9 2 0 0O O o0 1 ?
25 0c69735248af1dbe 9% 36 0 1 78 18 2 0 0 0 0 1 11
26 06a953b842c7dfle 9% 36 0 1 ™18 2 0 0 0 0 1 11
27 0a2387bfcbde4961 96 36 0 1 ™ 18 2 0 0 0 0 1 12
28 0a2387bf4db56cle9 9% 36 0 1 7 18 2 0 0 0 0 1 12
29 0913a4bf2e6687dc 9% 36 0 1 78 18 2 0 0 0 0 1 12
30 06af7d5e48c391b2 9% 36 0 1 8 15 3 0 0 0 0 1 11
31 04598ceb6a72f3d1 96 36 0 1 80 18 0 1 0 0 0 1 11
32 08a319f4c6ebd7b2 64 4 0 1 64 24 0 2 0 0 0 1 9
33 086d5f7e4c2193ba 64 44 0 1 64 24 0 2 0 0 0 1 9
34 ? 119 28 1 1 w21 0 0 0 0 0 1 ?
35 ? 119 28 1 1 ™21 0 O 0 0 0 1 ?
36 ? 119 28 1 1 ™21 0 0 O O O 1 7
37 03298bd5efc476al 111 30 1 1 72 24 0 0 0 0O 0 1 11
38 03d741f98b5ec621ab 111 30 1 1 7224 0 0 0 0 0 1 12
39 0e8952d7cadb61£f3 119 28 1 1 81 18 1 0 0 0 0 1 13
40 0283dbdeca769f15 119 28 1 1 81 18 1 0 0 0 0 1 13
41 ? 119 28 1 1 8 18 1 0 0 0 0o 1 7
42 ? 119 28 1 1 81 18 1 0 0 0 0 1 ?
43 0c2784fab961e3db 111 30 1 1 7% 21 1 0 0 0 0 1 12
44 0c4d9fba8e635172 111 30 1 1 7521 1 0 O O O 1 12
45 086abc84e79£2d153 111 30 1 1 7521 1 0 0 0 0 1 12
46 0d9163e5fb7ac842 119 28 1 1 8 15 2 0 0 0 0 1 13
47 ? 119 28 1 1 8 15 2 0 0 0 0 1 7
48 ? 119 28 1 1 8 15 2 0 0 0 0 1 ?
49 ? 119 28 1 1 8 15 2 0 0 0 0 1 ?
50 ? 119 28 1 1 84 15 2 0 0 0 o0 1 7

37

5. RESuLTS

TABLE 5.4: Implementations of the affine equivalence classes 51-100

Representative |c|=1/4 1/2 3/4 1 p=1/8 1/4 3/8 1/2 5/8 3/4 7/8 1 cost
51 0283db7eca659f14 111 30 1 1 ™ 18 2 0 0 0 0 1 11
52 0285cf4b9a36de71 111 30 1 1 7 18 2 0 0 0 0 1 11
53 0c3e97af86d4512b 111 30 1 1 78 18 2 0 0 0 0 1 12
54 038a75dbcf6el1294 111 30 1 1 78 18 2 0 0 O 0 1 12
55 038a64dbcf7e1295 111 30 1 1 718 2 0 0 0 0 1 12
56 0481e37d6afbc952 111 30 1 1 7 18 2 0 0 0 0 1 12
57 04987bcf6ad251e3 111 30 1 1 ™18 2 0 0 0 0 1 12
58 0c2db39a6e857f14 111 30 1 1 7% 18 2 0 0 0 0 1 12
59 086e7d5c4f21b39a 111 30 1 1 w18 2 0 0 0 0 1 12
60 0cf1634b9d25a78e 111 30 1 1 7 18 2 0 0 0 0 1 12
61 0a24193685def7bc 111 30 1 1 8 18 2 0 0 O 0 1 12
62 0a23486519dcfb7e 111 30 1 1 78 18 2 0 0 0 0 1 12
63 04£28d617be3c95a 111 30 1 1 7™ 18 2 0 0 0 0 1 13
64 Ocfbaei138594726d 111 30 1 1 7 18 2 0 0 0 0 1 13
65 0debaf129584736¢ 11 30 1 1 ™ 18 2 0 0 0 0 1 13
66 07d9afbdbec86231 111 30 1 1 7 18 2 0 0 0 0 1 13
67 0ae36592748cdflb 111 30 1 1 78 18 2 0 0 0 O 1 13
68 086293efc7b5d4al 111 30 1 1 7 18 2 0 0 0 0 1 13
69 04816aced372£95b 111 30 1 1 7 18 2 0 0 O 0 1 13
70 0281dfb5bce679a34 111 30 1 1 78 18 2 0 0 0 0 1 13
71 0182cf6ade579b34 111 30 1 1 8 18 2 0 0 0 0 1 13
72 0283db7fca6b9el4 111 30 1 1 7 18 2 0 0 0 0 1 13
73 0243d6aec7b95f18 111 30 1 1 7™ 18 2 0 0 0 0 1 13
74 ? 111 30 1 1 78 18 2 0 0 0 0 1 ?
75 ? 111 30 1 1 7™ 18 2 0 0 0 0 1 ?
76 ? 111 30 1 1 7 18 2 0 0 0 0 1 7
77 0bf36482759cdela 111 30 1 1 g1 15 3 0 0 O o0 1 13
78 ? 111 30 1 1 8 1 3 0 0 o0 0 1 7
79 08e42ac1d7£5b396 95 34 1 1 72 18 4 0 0 0 0 1 11
80 04693fd17b52eac8 95 34 1 1 72 18 4 0 0 0 0 1t 11
81 09e656cf74d82ba3l 95 3¢ 1 1 72 18 4 0 0 0 0 1 11
82 0c6bd9f2e8a51734 9% 34 1 1 72 18 4 0 0 0 O 1 11
83 08cb2aeld4f6b397 95 34 1 1 72 18 4 0 0 0 0 1 12
84 04ae8c219fbd5376 63 42 1 1 7 0 14 0 0 0 0 1 10
85 0dbeaB372£91c845 111 30 1 1 & 18 0 1 0 0 0 1 12
86 0ea62c93f4d587bl 111 30 1 1 8 18 0 1 0 0 0 1 13
87 0913b2c486ed5a7f 118 26 2 1 72 21 2 0 0 O O 1 13
88 0d7c2a186ebfb349 118 26 2 1 72 21 2 0 0O O 0 1 13
89 0c6749be1532f8da 118 26 2 1 72 21 2 0 0 0O 0 1 13
90 0e2f84acb7d65319 118 26 2 1 72 21 2 0 0 0 0 1 13
91 0329d7e8f4cb51bab 118 26 2 1 7221 2 0 0 O O 1 13
92 ? 118 26 2 1 72 21 2 0 0 0O O 1 7
93 0c2dbf16ae497358 110 28 2 1 66 24 2 0 0 0 O 1 11
94 095f18e4a7b3d2c6 110 28 2 1 66 24 2 0 O 0 0 1 11
95 04e8ca639bfd5172 110 28 2 1 66 24 2 0 O 0 0 1 12
96 0bdb7f243a18e6c9 118 26 2 1 7% 18 3 0 0 0 0 1 13
97 0913b24cabedb87f 118 26 2 1 ™ 18 3 0 0 0 0 1 13
98 0425be968fdc731a 118 26 2 1 ™ 18 3 0 0 0 0 1 13
99 0724ae85bfdc6319 118 26 2 1 % 18 3 0 0 0 0 1 13
100 01b2c5e3£7d68%a4 118 26 2 1 7 18 3 0 0 0 O 1 13

38

Conclusion

TABLE 5.5: Implementations of the affine equivalence classes 101-150

Representative |c|=1/4 1/2 3/4 1 p=1/8 1/4 3/8 1/2 5/8 3/4 7/8 1 cost
101 0acbd736£4b912e8 118 26 2 1 7% 18 3 0 0O 0 0 1 13
102 09657cade4831bf2 118 26 2 1 7% 18 3 0 0 0 0 1 13
103 0821e7ca6fd593b4 118 26 2 1 7 18 3 0 0 0 0 1 13
104 012bd4e3c7£598a6 118 26 2 1 7% 18 3 0 0 0 0 1 13
105 ? 118 26 2 1 75 18 3 0 O o0 0 1 7
106 0a387f496edcb125 110 28 2 1 69 21 3 0 O O o0 1 11
107 0425bd968ecf731a 110 28 2 1 69 21 3 0 0 0 0 1 11
108 03298bd5cfed76al 110 28 2 1 69 21 3 0 O O O 1 11
109 086e5c7d4£2391ba 110 28 2 1 69 21 3 0 O O o0 1 11
110 06853d942cab71fe 110 28 2 1 69 21 3 0 O 0 O 1 11
111 0Obd74f985ec621a3 110 28 2 1 69 21 3 0 O O O 1 12
112 06e915db£f37a42c8 110 28 2 1 69 21 3 0 O O 0 1 12
113 0ec9731dfb52a486 110 28 2 1 69 21 3 0 0 O 0 1 12
114 08a1£356e24db79c¢ 110 28 2 1 69 21 3 0 O O 0 1 12
115 0942563718fdabec 110 28 2 1 69 21 3 0 O 0 0 1 12
116 0c8962e5fb7a41d3 118 26 2 1 M 15 4 0 0 0 0 1 13
117 ? 118 26 2 1 7 15 4 0 0 0 0 1 ?
118 ? 118 26 2 1 w15 4 0 0 0 0 1 ?
119 048e26c¢31£957bda 110 28 2 1 72 18 4 0 0 O 0 1 12
120 04cae86bf1d35972 110 28 2 1 72 18 4 0 0 0 0 1 12
121 03a1df79ec658b24 110 28 2 1 72 18 4 0 0 0 0 1 12
122 0281ce6bdf549a37 110 28 2 1 72 18 4 0 0 O 0 1 12
123 0281ce7bdf459a36 110 28 2 1 72 18 4 0 0 0 0 1 12
124 0414376cfae2958b 110 28 2 1 72 18 4 0 0 0 0 1 12
125 0Ob12756acfe4938d 110 28 2 1 72 18 4 0 0 0 0 1 12
126 08f5ble42ac3d697 110 28 2 1 72 18 4 0 0 O 0 1 12
127 02418ae693fcd7bb 110 280 2 1 72 18 4 0 0 0 0 1 12
128 0bd74f91c65ea823 110 28 2 1 72 18 4 0 0 0 0 1 13
129 08eb52ac1£4d693b7 110 28 2 1 72 18 4 0 0 0O 0 1 13
130 08a2d5e3£6c791b4 118 26 2 1 4 21 0 1 O O O 1 13
131 0d91ieab572f3c84b 118 26 2 1 77 18 11 0 0 0 1 12
132 0481e37dfa6bb9c2 110 28 2 1 7121 1 1 0 0 0 1 12
133 0c86d352f74e19ba 110 28 2 1 71 21 1 1 0 O 0 1 12
134 0829b71eab4df35¢ 110 28 2 1 4 18 2 1 0 0 0 1 11
135 0c635172e8abf9d4 110 28 2 1 74 18 2 1 0 0 0 1 11
136 04e935fb71d86ac2 110 28 2 1 74 18 2 1 0 O 0 1 12
137 0ac9£75d1b32e684 110 28 2 1 7 18 2 1 0 0O 0 1 12
138 0591e26d7afbc843 110 28 2 1 74 18 2 1 0 0 0 1 12
139 08£43bd6912c7eba 110 28 2 1 74 18 2 1 0 0 0 1 12
140 0821£396ea45b7dc 110 28 2 1 4 18 2 1 0 0 0 1 12
141 0f415a6b97d2e8c3 110 28 2 1 T4 18 2 1 0 0O 0 1 12
142 0283df7ace659b14 94 32 2 1 62 24 2 1 0 0 0 1 9
143 0a6d5£7c¢4e2391b8 94 32 2 1 62 24 2 1 0 0 0 1 9
144 04ac8e239fbd5176 4 32 2 1 62 24 2 1 0 0 0 1 10
145 0821f6dacbedb397 94 32 2 1 62 24 2 1 0 0 0 1 10
146 0814d5ea7£62b3c9 94 32 2 1 62 24 2 1 0 0 0 1 10
147 0425b796aec1£3d8 94 32 2 1 62 24 2 1 0 0 O 1 10
148 04617bb5a8ce3d9f2 94 32 2 1 62 24 2 1 0 0 0 1 10
149 0c63d1fae82597b4 94 32 2 1 62 24 2 1 0 0 0 1 10
150 0e6bd9f2c8ab1734 94 32 2 1 62 24 2 1 0 0 0 1 10

39

5. RESULTS

TABLE 5.6: Implementations of the affine equivalence classes 151-200

Representative |¢/=1/4 1/2 3/4 1 p=1/8 1/4 3/8 1/2 5/8 3/4 7/8 1 cost
151 04af8d21be9c7356 94 32 2 1 62 24 2 1 0 0 0 1 11
152 0c81b£53d9762ea4 94 32 2 1 62 24 2 1 0 0 0 1 11
153 0a2395b8d7f6cdel 9 32 2 1 62 24 2 1 0 0 0 1 11
154 0824f6ae5d7391cb 94 32 2 1 62 24 2 1 0 0 0 1 11
155 04639fd2e8cb517a 94 32 2 1 64 24 0 2 0 0 0 1 10
156 0c69a24e£758b31d 117 24 3 1 6 21 4 0 0 0 0 1 12
157 08296cbadfdeb3l7? 117 24 3 1 66 21 4 0 O O 0 1 13
158 Obdb7£26183ac4e9 117 24 3 1 69 18 5 0 0 O 0 1 13
159 08eb5c7a4b391£6d2 117 24 3 1 69 18 5 0 0 0 0 1 13
160 08a9f65db217e3c4 117 24 3 1 69 18 5 0 0 O 0 1 13
161 0a8b46d2ce7£1395 117 24 3 1 69 18 5 0 0 0 0 1 13
162 08235cfae64719bd 117 24 3 1 69 18 5 0 0 0 0 1 13
163 0ac46e251b39£7d8 109 26 3 1 63 21 5 0 O O 0 1 11
164 08e4c6a591b3d7£2 109 26 3 1 63 21 5 0O O O O 1 11
165 0ceb53b91d7£284a6 109 26 3 1 ‘63 21 5 O O O O 1 11
166 046abec9£8d427351 109 26 3 1 63 21 5 0 O O O 1 11
167 0823b79adbf64cel 109 26 3 1 63 21 5 0 O O O 1 11
168 0a4e86c13bd5£792 109 26 3 1 63 21 5 0 O 0O O 1 12
169 06e842c397f5blda 109 26 3 1 63 21 5 0 O O 0 1 12
170 05b£8d349cae6217 109 26 3 1 63 21 5 0 0O O O 1 12
171 0291e8a3f6d5b7c4 117 24 3 1 72 15 6 0 0O 0 O 1 12
172 068cea2db7951£34 109 26 3 1 66 18 6 0 0 O O 1 12
173 08235cfae74619bd 109 26 3 1 66 18 6 0 0 0 O 1 12
174 0219d7e3c6£48abb 109 26 3 1 66 18 6 0 0 0 0 1 12
175 03alec69df748b25 109 26 3 1 66 18 6 0 0 0 O 1 12
176 0283cabedb749f15 109 26 3 1 66 18 6 0 O O O 1 12
177 032476abcfe98bdi 109 26 3 1 66 18 6 0 0 0 0 1 12
178 0289f75a6c4d3ble 109 26 3 1 69 15 7 0 0 0 0 1 12
179 0ea3c84671£2d95b 117 24 3 1 66 24 1 1 0 0 O 1 12
180 072634bc58f9elad 117 24 3 1 65 24 1 1 0 0 O 1 13
181 06b3e9c1fadd2785 117 24 3 1 66 4 1 1 O 0O 0 1 13
182 09324debf75618ac 117 24 3 1 68 21 2 1 O 0O O 1 13
183 0e4226c3fbd97158 109 26 3 1 62 24 2 1 0 0 0 1 11
184 047bafe9d8c36251 109 26 3 1 62 24 2 1 0 0 0 1 11
185 041dbeab267£c983 109 26 3 1 62 24 2 1 0 0 0 1 11
186 0481eb7d62£3c95a 109 26 3 1 62 24 2 1 0 0 0 1 11
187 0ceb3b91£7d4a286 109 26 3 1 62 24 2 1 0 0 0 1 12
188 0a3b29c¢5fe4d6781 109 26 3 1 62 24 2 1 0 0 0 1 12
189 0ea342c¢c6fb78d951 117 24 3 1 8 9 6 1 0 0 0 1 12
190 0285ca4e9f36db71 109 26 3 1 7 12 6 1 0 0 0 1 1
191 06c18a4edf329b75 109 26 3 1 7 12 6 1 0 0 0 1 11
192 08e64c29d7f51b3a 93 30 3 1 66 15 7 1 0 0 O 1 10
193 08e6c4ald7£593b2 93 30 3 1 656 15 7 1 0 0 0O 1 10
194 08ale2c6£7d4b395 116 22 4 1 60 22 6 0 0O O O 1 12
195 0e6c84a17£d5b392 116 22 4 1 60 21 6 0 O O O 1 13
196 0d4786ebc2al1fb349 116 22 4 1 60 21 6 0 O O O 1 13
197 0938e64bf75ca2ld 116 22 4 1 63 18 7 0 0O 0 0 1 12
198 08ale6c3£f7d4b295 116 22 4 1 6 15 8 0 0 0 0 1 12
199 08a1e6d3f7c5b294 116 22 4 1 66 15 8 0 0 0 0 1 12
200 0c6348aef71259bd 116 22 4 1 9 24 3 1 0 0 0 1 12

40

Conclusion

TABLE 5.7: Implementations of the affine equivalence classes 201-250

Representative |c|=1/4 1/2 3/4 1 p=1/8 1/4 3/8 1/2 5/8 3/4 7/8 1 cost

201 08e64c2bd7£5193a 108 24 4 1 56 24 4 1 0 0 0 1 11
202 08ce4623f5d791ba 108 24 4 1 6 24 4 1 0 0 0 1 11
203 024ce6a97£5d1b38 108 24 4 1 56 24 4 1 0 0 0 1 11
204 04a8ec23dbf95176 108 24 4 1 56 24 4 1 0 0 0 1 11
205 0Oac46e2d1b397£58 108 24 4 1 62 18 6 1 0 0 0 1 11
206 08a17b95f3d2c6e4d 108 24 4 1 62 18 6 1 0 0 0 1 11
207 0759aec8fbd26341 108 24 4 1 62 18 6 1 0 0 O 1 11
208 08297d5a4cefb316 108 24 4 1 62 18 6 1 0 0 0 1 11
209 02a846¢397blfbde 108 24 4 1 62 18 6 1 0 0 0 1 12
210 06ac24e397bbd1£f8 108 24 4 1 62 18 6 1 0 O 0 1 12
211 0ac62e83b795f1d4 108 24 4 1 62 18 6 1 0 0 0 1 12
212 0d98eaB5fb7341c2 116 22 4 1 73 12 5 2 0 0 0 1 12
213 0283de7bcf659a14 108 24 4 1 67 15 5 2 0 0 0 1 1
214 0392ce7bdf648alb 108 24 4 1 67 15 5 2 0 0 0 1 11
215 0281df7ace459b36 92 28 4 1 48 30 0 3 0 0 0 1 9

216 086£b5d7e4c29b31a 92 28 4 1 48 30 0 3 0 0 0 1 9

217 0283de7bcf459al16 115 20 5 1 56 21 6 1 0 O 0 1 12
218 0829f7baeb64db31c 107 22 5 1 52 24 4 2 0 0 0 1 9

219 0823b79adbfécdel 107 22 5 1 52 24 4 2 0 0 0 1 10
220 08a2d5f3e7c691b4 115 20 5 1 64 15 6 2 0 0 0 1 12
221 08a2c4e597b1d3f6 107 22 5 1 58 18 6 2 0 0 O 1 11
222 08e6c4a197£5d3b2 107 22 5 1 8. 18 6 2 0 0 0 1 11
223 08ab4ce7bdf1b293 114 18 6 1 63 6 15 0 0 O 0 1 12
224 0462e8c3715bf9da 114 18 6 1 63 6 15 0 0 0 O 1 13
225 08465dbceT7a291£3 114 18 6 1 54 21 4 3 0 0 0 1 12
226 08a1d5f3c4e6b297 114 18 6 1 54 21 4 3 0 0 0 1 12
227 0abd4ef9823657cl 106 20 6 1 54 18 6 3 0 0 0 1 10
228 048c62e315£97bda 114 18 6 1 69 6 9 3 0 0 0 1 13
229 0823d7fa4ceb591b6 106 20 6 1 63 9 9 3 0 0 0 1 11
230 0c69a24ef718b35d 113 16 7 1 62 9 8 4 0 0 0 1 1
231 0938e65bf74ca2ld 110 10 10 1 65 0 5 10 0 O O 1 11
232 092e7456cdfb83at 94 32 2 1 66 23 1 0 1 0 0O 1 11
233 03fcb56ed47928alb 94 32 2 1 6 23 1 0 1 0 0 1 11
234 097e4d6£f5c38a21b 109 26 3 1 66 23 1 0 1 0 O 1 12
235 06ac8e239fbdb174 92 28 4 1 60 17 7 0 1 0 0 1 10
236 06ac8e219fbd7354 92 28 4 1 60 17 7 O 1 0 0 1 10
237 08e64c29f7d51b3a 107 22 5 1 48 29 3 0 1 0 0 1 11
238 0921b3d5f7a86e4c 107 22 5 1 48 29 3 0 1 0 0 1 12
239 08e64c29dbf71b3a 107 22 5 1 54 23 5 0 1 0 0 1 11
240 0ac46e29£7d53b18 107 22 5 1 60 17 7 0 1 0 0 1 11
241 08a719b35df6e2c4 106 18 7 1 8 1 9 2 1 0 0 1 11
242 0a23f7d86ec591bd 106 18 7 1 8 11 9 2 1 0 0 1 11
243 086d5f7ec4291b3a 62 40 2 1 48 33 0 0 0 1 0 1 9

244 08e64c2bf7d5193a 90 24 6 1 42 27 6 0 0 1 0 1 10
245 084a6e1d5c397£2b 112 28 0 2 5721 7 0 O O O 1 12
246 08ab193246cf7dbe 96 32 0 2 51212 9 O O O O 1 10
247 0ba981234fe6dc57 112 28 0 2 50 30 2 1 0 0 0 1 11
248 0c2f1d7a48693bbe 9% 32 0 2 4 30 4 1 0 0 0 1 9

249 012b89f7cde654a3 96 32 0 2 4 30 4 1 0 0 0O 1 9

250 082b19bd4f6e7c3a 96 32 0 2 4 30 4 1 0 0 0 1 10

41

5. REsuLTS

TABLE 5.8: Implementations of the affine equivalence classes 251-300

Representative || =1/4 1/2 3/4 1 p=1/8 1/4 3/8 1/2 5/8 3/4 7/8 1 cost
251 024513768ecbf9da 9% 32 0 2 4 3 4 1 0 0 0 1 10
252 0c7b3e6a2f4d5918 9% 32 0 2 4 30 4 1 0 0 0 1 10
263 086f5d7e4c293bla 64 40 0 2 32 36 0 4 0 0 0 1 7
254 086f5d7e4c2391ba 64 40 0 2 32 36 0 4 0 0 0 1 7
255 082b197c4ebd5f3a 64 40 0 2 32 3 0 4 0 0O 0 1 8
256 046173528cebd9fa 64 40 O 2 32 36 0 4 0 0 0 1 8
257 086f5d7ec4alb392 64 40 0 2 32 3 0 4 0 0 0 1 8
268 08a319f6c4e7dbb2 0 56 0 2 64 0 0 14 0 O O 1 7
269 09£75d26183ac4eb 110 24 2 2 45 21 11 0 O O O 1 11
260 08a357dfb192c4eb 110 24 2 2 50 18 10 1 0 0 0 1 1
261 08a71df395b2c4e6 94 28 2 2 40 24 8 2 0 0 0 1 9
262 0459afebd8c16273 94 28 2 2 40 24 8 2 0 0 0 1 9
263 0812b3a95d46f7ce 94 28 2 2 40 24 8 2 0 0 0 1 9
264 04369ca78def512b 110 24 2 2 48 24 4 3 0 0 0 1 11
265 032547618bacfed9d 108 20 4 2 4 12 16 1 0 0 0 1 10
266 08297fba6e4d3blc 92 24 4 2 2830 4 5 0 0 0 1 7
267 082b193a4ceb£f7d6 92 24 4 2 28 30 4 5 0 0 0 1 8
268 082b3f1abd7e4c69 92 24 4 2 28 30 4 5 0 0 0 1 8
269 0461dbf28ce9537a 56 28 8 1 06 0 0 0 0 0 2 9
270 092e1436cdfb85a7 9% 32 0 2 48 29 3 0 1 0 0 1 11
271 082bla6d5f7e4c39 9% 32 0 2 48 29 3 0 1 0 0 1 11
272 046£953bld7ec82a 110 24 2 2 3 3% 3 0 1 0 0o 1 11
273 0a28c6eb3b91£7d4 92 24 4 2 40 17 11 2 1 0 0 1 9
274 082a4ce51b39d7£6 92 24 4 2 40 17 11 2 1 0 O 1 9
275 0a28c4eb3b91£7d6 106 16 6 2 32 23 7 4 1 0 0 1 10
276 082ac4e519b3d7{6 104 12 8 2 42 11 5 9 1 0 0 1 10
277 082b7cb5a496e3f1d 108 20 4 2 58 16 0 5 2 0 0 1 11
278 08a75db391f6cde2 92 24 4 2 46 22 0 5 2 0 0 1 9
279 086e4c2956d7f1b3a 90 20 6 2 42 9 15 0 3 0 0 1 9
280 082a4ce7193b£fbd6 104 12 8 2 24 32 0 3 4 0 0 1 10
281 082a4ceb193bd7f6 104 12 8 2 48 8 8 3 4 0 0 1 10
282 082ac4e319b7d5f6 100 4 12 2 54 0 0 9 6 0 0 1 10
283 086e4c295d7f3bla 62 36 2 2 36 21 12 0 O 1 0O 1 8
284 04ae8c239dbf5176 62 36 2 2 36 21 12 0 0 1 0 1 8
285 08a35df2c4e791b6 60 32 4 2 32 27 0 v 0 1 0 1 7
286 08e64c2bd5f7193a 90 20 6 2 24 27 8 3 0 1 0 1 8
287 0823d5fadce791b6 8 16 8 2 38 13 8 4 2 1 0 1 8
288 046153728ce9dbfa 0 56 0 2 0 0 0 0 0 0 2 7
289 046b59728ce3difa 0 56 0 2 0 66 0 0 0 0 0 2 7
290 0463d9f28cebb17a 56 24 8 2 0 4 0 6 0 0 0 2 7
291 012745638%aedcbf 9% 24 0 4 24 6 24 3 0 0 0 1 8
292 081b2a394cbe7f6d 64 32 0 4 0 36 0 12 0 0 0 1 6
293 0c2f1d7b483a596e 9% 24 0 4 12 38 0 3 4 0 0 1 9
294 082ac4e719b3d556 8 8 8 4 12 20 ¢ 9 4 2 0 1 7
295 086e4c2bbd7£193a 60 24 4 4 66 9 16 5 0 3 0 1 6
296 082b5d7£193e4c6a 8 0 12 4 3 3 0 0 12 3 0 1 7
297 082b197e4c6f5d3a 0 48 0 4 0 32 012 0 0 0 2 5
298 046351728cebd9fa 0 48 0 4 ¢ 32 0 12 0 0 0 2 5
299 082bbd7a4c6f193e 56 16 8 4 0 26 0 12 0 2 0 2 5
300 082a4c6f193bbd7e 56 0 8 8 014 0 0 0 14 0 2 4

42

Conclusion

TABLE 5.9: Implementations of the affine equivalence classes 300-302

Representative |c|=1/4 1/2 3/4 1 p=1/8 1/4 3/8 1/2 5/8 3/4 7/8 1 cost

301 082b193adc6fbd7e 0 32 0 8 60 0 024 0 0 0 4 3
302 0123456789abcdef 0 0 0 16 0 0 0 0 0 0 0 16 O

43

Chapter 6

Conclusion

We conclude this thesis by summarising the main achievements and results. We also
suggest ideas for further research.

6.1 Achievements of this thesis

In this master thesis the problem of designing and efficiently implementing s-boxes
has been treated.

e We presented the algorithms used to search through all possible sequences of
instructions, to classify the s-boxes and to manage large amounts of data.

e We introduced concepts to parallelise the algorithm on different platforms.
We decided for a sequential approach which could be speeded up by the
support of worker threads. The efficiency of the method has been discussed
and improvements haven been proposed.

e The efficiency has been further increased by optimising on the algorithmic level.
A modified equivalence algorithm has been introduced which could reduce the
branching factor by more advanced caching. All nodes that are equivalent
with a previous one will be skipped from further investigations. Reducing the
branching factor will speed up the program exponentially.

e The algorithms have been applied for a basic architecture with 5 registers.
The time after finishing the code was not sufficient to find all 302 classes. By
the time of handing in the thesis 272 classes have been found. The classes
found cover about 90% of all s-boxes. The results have been compared with
literature and s-boxes of selected primitives. We also investigated properties
of the representatives, that are variant within a class. Further we looked at
the implementations of the representatives and could show that none of them
makes use of the NOT instruction.

e A new approach for designing cryptographic primitives has been introduced.
We propose to choose the s-box, other than in earlier approaches, in a first

45

6. CONCLUSION

6.2

step. Therefore an optimal implementation of an s-box with certain, non-linear
properties is selected from a table as created in this thesis. The linear layer is
then designed such that the other specifications are fulfilled.

Further work

We believe that the approach introduced has a huge potential. There are many ideas
how to further extend and improve the algorithm.

46

The search for the best implementation for s-boxes is still not completely
finished even though it is already advanced. The simulation is still running
and we will update our results as soon as it will be finished.

In section 4.3 problems of the chosen parallelisation strategy have been shown.
Redesigning the parallelisation could be combined with porting the program
on a cluster architecture. This task may be required for certain extensions
proposed in this chapter.

The simulation of this work was limited to a basic instruction set. Modern
processors support many more advanced features such as , multiple ALUs,
pipelining and extended instruction sets. All those features could result different
trade-offs when designing s-boxes.

The definition of instructions could be made in a much more generic way. Rather
than explicitly defining the instruction in the code, it could be defined as generic
lookup table for any 5 x 5-bit function. This could result in an interesting new
approach for hardware implementations. An already implemented s-box can
be reused as one single instruction and the search algorithm can find ways to
implement an s-box by reusing another s-box on the same chip.

It has been shown that the relationship between implementation cost and
non-linear properties is not monotone is. This can be used to find optimal
trade-offs between implementations cost, non-linear properties and the number
of rounds in a cipher.

In section 5.4, we propose a design methodology for cryptographic primitives.
The problem of interaction between linear and substitution layer has not been
fully investigated. It is not proven if the most efficient members, which may
have same some lacks in variant properties, can be compensated by the linear
layer such that the cipher is more efficient than if one would have designed
according to traditional design strategies. We suggest to investigate refinements
of the design strategy.

Appendices

47

Appendix A

Most efficient implementations

S-box 9 S-box 10 S-box 11 S-box 13 S-box 14 S-box 15
0 MOV r4 10 0 MOV r4 r0 0 MOV r4 10 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0
1 AND r0 rl 1 AND r0 rl 1 AND r0rl 1 AND r0 r1 1 AND r0 rl 1 AND rOrl
2 XOR 10 r2 2 XOR r0 r2 2 XOR 10 r2 2 XOR r0 r2 2 XOR r0 r2 2 XOR r0 r2
30R~r2rl 3 AND r2rl 3 AND r2 r0 30R«r2rl 30Rr2ri1 30RTr2rl1
4 XOR r2r3 4 XOR r2 r3 4 XOR r2 r3 4 XOR r2 r3 4 XOR rl1 r0 4 XOR r2 r3
5 OR r3 r0 5 AND r3 r2 5 OR r3 r0 5 AND r3 r0 5 XOR r2 r3 5 OR r3 10
6 XOR r3 r4 6 XOR r3 r0 6 XOR r3r1 6 XOR r3 r4 6 AND r3 r0 6 AND rl r3
7 AND r4 r3 7 AND r0 r2 7 AND rl r2 7 AND r4 r2 7 XOR r3 r4 7 XOR r3 r4
8 XOR r4 r2 8 XOR 10 r4 8 XOR rl r4d 8 XOR rl r4 8 AND r4 r2 8 AND r4 r2
9 AND r2 r3 9 OR r4 10 9 OR r4 r2 r0 rl r2r3 9 XOR r0 r4 9 XOR rl r4
10 XOR r1 r2 10 AND r4 r3 10 XOR r4 r0 r0rlr2r3 rQrl r2r3
r0rl r3 rd 11 XOR r1 r4 11 AND r0 r1

r0rlr2r3 12 XOR r0 r2

rOrlr3rd

S-box 16 S-box 18 S-box 19 S-box 20 S-box 21 S-box 25
0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0
1 AND r0 rl 1 AND r0rl 1 ANDr0rl 1 AND r0 r1 1 ANDrOrl 1 AND r0 r1
2 XOR r0 r2 2 XOR 10 r2 2 XOR r0 r2 2 XOR 10 r2 2 XOR r0 r2 2 XOR r0 r2
3 AND r2rl 3 AND r2 r0 30RT2rl 30Rr2rl 3 AND r2 r0 30R~r2rl
4 XOR r2r3 4 XORr2r3 4 XOR rl1 r0 4 XOR rl1 r3 4 XOR r2 r3 4 XOR rl r3
50Rr3rl 5 OR r3 r0 5 XOR r2 r3 5 AND rl r0 5 OR r3 r0 5 AND rl r0
6 XOR r3 r0 6 XOR r3 rl 6 AND r3 r0 6 XOR r2rl 6 XOR r3 r1 6 XOR r1 r2
7 OR 10 r2 7 AND r1 r2 7 XOR r3 rd 7 XOR rl r4 7 AND rl r0 7 XOR r3 r4
8 XOR r0 r4 8 XOR rlr4d 8 AND r4 r2 8 AND r4 r2 8 XOR rl1r4 8 XOR r2 r3
9 AND r4 r2 9 OR r4 r0 9 XORrdrl 9 XOR r4 r3 9 AND r4 r3 9 AND r3rl
10 XOR rl r4 10 AND r4 r3 10 AND rl r3 10 AND r3rl 10 XOR r4 r2 10 XOR r3 rd
r0rlr2 r3 11 XOR r2 r4 11 XOR r0 rl 11 XOR r0 r3 11 OR r2r3 rOrl r2 r3

rOrl r2 r3 r0 r2 r3 r4d r0rl r2 r4 12 XOR r0 r2

r0rl r3rd

S-box 26 S-box 27 S-box 28 S-box 29 S-box 30 S-box 31
0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0
1 AND r0 rl 1 AND r0 rl 1 AND rO rl 1 AND r0 r1 1 AND r0 rl 1 AND r0 r1
2 XOR r0 r2 20Rrlr4 20Rrlrd 20RTrlr4 2 XOR r0 r2 2 XOR r0 r2
30R~r2rl 3 XOR r0 r2 3 XOR r0 r2 3 XOR 10 r2 30R~2rl 3 AND r2rl
4 XOR r2r3 4 AND r2 r4 4 AND r2 r4 4 ANDr2r4 4 XOR r2r4 4 XOR r2 r3
5 AND r3 r0 5 XOR r0 r3 5 XOR r4 r0 5 XOR r4 r0 5 OR r4 r0 5 OR r3rl
6 XOR r3 rl 6 XOR r4 r0 6 XOR r0 r3 6 XOR r0 r3 6 XOR r3 r4 6 XOR r3 r4
7 AND rl r2 7 AND r0 r1 7 AND r0 rl 7 AND r3rl 7 AND r4 r3 7 AND rd r2
8 XOR r1r4 8 OR r0 r2 8 OR r0 r2 8 OR r3 r2 8 XOR r4 r2 8 XOR r4 r0
9 OR r4 r3 9 XOR r2 r3 9 XOR r2 r3 9 XOR r2 r0 9 AND r2 r3 9 AND r0 r2
10 XOR r2 r4 10 AND r3 r0 10 AND r3 r0 10 AND r0 r3 10 XOR rl r2 10 XOR 10 rl
r0rlr2 r3 11 XOR rl1 r3 11 XOR rl r3 11 XOR r0 r1 rOrl r3 r4 r0 r2 r3 rd

r0rlr2r4 rOrl r2r4 r0 r2 r3 r4

49

A. MOST EFFICIENT IMPLEMENTATIONS

S-box 32 S-box 33 S-box 37 S-box 38 S-box 39 S-box 40
0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0
1 AND r0 r1 1 AND 0 rl 1 AND 10 r1 1 AND r0rl 1 AND r0 rl 1 AND r0Orl
2 XOR r0 r2 2 XOR r0 r2 2 XOR 10 r2 2 AND r0 r2 2 XOR r0 r2 2 XOR r0 r2
3 ANDr2r1 30RTr2rl 3 AND r2r1 3 XOR r0 r3 3 AND r2 10 3 AND r2 r0
4 XOR r2 r3 4 XOR r2 r3 4 XOR r2 r3 40R r3rl 4 XOR rl r0 4 XOR r2 r3
50Rr3rl 5 AND r3 r0 5 AND r3 r2 5 XOR r3 r2 5 XOR r2 r3 5 OR r3 r0
6 XOR r3 r4 6 XOR r3 rd 6 XOR r3 r0 6 AND r2 r0 6 OR r3 r0 6 XOR r3 rl
7 AND r4 r2 7 AND r4 10 7 AND 10 r2 7XOR r2r4 7 XOR r3r4 7 AND r1 r2
8 XOR rl r4 8 XOR rl r4 8 XOR r0 r4 8 AND r4 r3 8 OR r4 r3 8 XOR r0 r1
rOrl r2r3 r0rlr2r3 9 OR r4 r2 9 XOR rd r1 9 XOR r2 r3 9 AND rl r0
10 XOR rl r4 10 OR rl r2 10 XOR r4 r1 10 XOR r1 r4
rOrl r2 13 11 XOR r0 rl 11 AND ri r2 11 AND r4 r3
10 r2 r3 rd 12 XOR r0 r1 12 XOR r2 r4
rQ r2 r3 r4d r0rl r2 r3
S-box 43 S-box 44 S-box 45 S-box 46 S-box 51 S-box 52
0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0
1 AND r0 r1 1 AND r0 rl 1 AND r0 rl 1 AND r0Orl 1 AND r0 rl 1 AND r0 r1
2 XOR r0 r2 2 XOR r0 r2 2 XOR r2 r0 2 XOR r0 r2 2 XOR r0 r2 2 XOR r2 r0
3 AND r2rl 30Rr2rl 3 AND r0 r2 3 AND r2 10 3 AND r2 10 3 AND r0 r2
4 OR r2r3 4 XOR r2 r3 4 XOR r0 r3 4 XOR rl1 r0 4 XOR r2 r3 4 XOR r0 r3
5 XOR r2 rd 5 OR r3 r0 5 OR r3 r2 5 XOR r2 r3 5 OR r3 r0 5 OR r3 r2
6 XOR r4 r0 6 XOR r4 r2 6 XOR rl r2 6 OR r3 r0 6 XOR r3 rl 6 XOR r3rl
7 AND r0 r3 7 XOR r3 r4 7 XOR r3 r4 7 XOR rl r2 7 AND rl r2 7 AND rl 10
8 XOR r0 r1 8 AND r4 r3 8 AND r4 r0 8 XOR r3 r4 8 XOR r1 r4d 8 XOR rl1 r4
9 MOV rl r0 9 XOR r4 r2 9 XOR rd r1 9 AND r4 13 9 AND r4 r3 9 AND r4 r3
10 AND 10 r2 10 AND r2 r3 10 OR r1 r3 10 XOR r4 r1 10 XOR r2 r4 10 XOR r0 r4
11 XOR r0 r3 11 XOR ri1 r2 11 XOR rl r2 11 OR rl1 r3 0 rl r2r3 r0rl r2 r3
r0 rl r2rd rOrlr3 rd rOrl r3 r4 12 XOR r0 rl
r0 12 r3 rd
S-box 53 S-box 54 S-box 55 S-box 56 S-box 57 S-box 58
0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0
1 AND r0 rl 1 AND r0 r1 1 AND r0 rl 1 AND r0 rl 1 AND r0r1 1 AND r0 r1
2 XOR r0 r2 2 XOR r0 r2 2 XOR r0 r2 2 XOR r0 r2 2 XOR r0 r2 2 XOR r0 r2
3 AND r2 r0 3 AND r2 10 3 AND r2 r0 3 AND r2 r0 3 AND r2 r0 3 AND r2 rl
4 XOR r0 rl 4 XOR rl r0 4 XOR rl r0 4 XOR rl1 r0 4 XOR r2 r3 40RT21r4
5 XOR r2 r3 5 XOR r2 r3 5 XOR r2 r3 5 XOR r2 r3 5 OR r3 r0 5 XOR r2 r3
6 AND r3 r0 6 OR r3 r0 6 OR 13 r0 6 OR r3 r0 6 XOR r0 rl 6 OR r3 r0
7XORr3r4 7 XOR r3rl 7 XOR r3 r1 7 XOR r3 r4 7XORr3r4 7 XOR rl r3
8 AND r4 r3 8 AND rl r2 8 AND rl1 r2 8 AND rd r2 8 AND r4 r2 8 AND r3 r1
9 XOR r4 r2 9 XOR rl1 r4 9 XORrlr4d 9 XORrdrl 9 XOR r4 r1 9 XOR r3 r2
10 AND r2 r3 10 AND r4 r1 10 OR r4 rl 10 AND rl r3 10 AND r1 r3 10 AND r2 rl
11 XOR rl r2 11 XOR 10 r4 11 XOR r0 r4 11 XOR r0 rl 11 XOR r1 r2 11 XOR r2 rd
0 rl r3r4d r0rl r2 r3 r0rl r2r3 0 r2 r3rd rOrlr3rd rQrl r2 r3
S-box 59 S-box 60 S-box 61 S-box 62 S-box 63 S-box 64
0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0
1 AND r0 rl1 1 AND r0 rl 1 AND r0 r1 1 AND r0rl 1 AND r0r1 1 AND r0 r1
2 XOR r0 r2 2 XOR r0 r2 2 XOR rl r2 2 XOR rl r2 2 AND r0 r2 2 AND r0 r2
30Rr2rl 30Rr2rl 30RTrlr4 3O0OR rlr4 3 XOR r0 r3 3 XOR r0 r3
4 XOR rl r0 4 XOR rl r0 4 XOR r3 r0 4 XOR r4 r0 4 0OR r3rl 40R3rl
5 XOR r2 r3 5 XOR r3 r2 5 XOR r4 r3 5 XOR r0 r3 5 XOR rl r2 5 XOR r2 r0
6 AND r3 r0 6 AND r2 r3 6 AND r3 rt 6 AND r3 rl 6 AND r2 r0 6 XOR r2 r3
7 XOR r3 r4 7XORr2r4 7 XOR rl r2 7 XOR rl r2 7 XOR r2 r3 7 AND r3 r2
8 AND r4 r2 8 OR r4 r3 8 XOR rl r3 8 XOR rl r3 8 XOR r3 r4 8 XOR r3 r4
9 XOR rl r4 9 XOR r4 r0 9 OR r3 r0 9ORr3r4 9 AND r4 r2 9 OR r4 r2
10 AND r4 r1 10 AND r0 r2 10 OR r2 r3 10 OR r2 r3 10 XOR r4 r1 10 XOR r4 r0
11 XOR r0 r4 11 XOR 10 r3 11 XOR 10 r2 11 XOR r2 r4 11 AND rl1 r3 11 AND r0 r3
r0rl r2 r3 rOrl r2r4 rQOrl r3rd rOrl r2 r3 12 XOR r0 r1 12 XOR r0 rl
r0r2r3r4d rQ r2 r3 r4
S-box 65 S-box 66 S-box 67 S-box 68 S-box 69 S-box 70
0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0
1 AND r0 r1 1 AND 10 r1 1 AND r0 rl 1 AND r0rl 1 AND r0 rl 1 AND r0 rl
2 AND r0 r2 2 AND r0 r2 2 OR r0 r2 2 XOR r0 r2 2 XOR r0 r2 2 XOR r0 r2
3 XOR r0 r3 3 XOR r0 r3 3 XOR 013 3 AND r2 r0 3 AND r2 r0 3 AND r2 r0
40R r3rl 40R13rl 4 AND r3 r2 4 XOR r2r3 4 XOR r2 r3 4 XOR r2 r3
5 XOR r2 r0 5 XOR r3 r2 5 XOR rl r0 5 OR r3 r0 5 OR r3 r0 5 OR r3 r0
6 XOR r2 r3 6 AND r2 r0 6 XOR r3 rl 6 XOR r0rl 6 XOR r0 r2 6 XOR r0 r2
7 AND r3 r2 7 XOR r2 r1 7 AND rl1 r3 7 XOR r3 r4 7 XOR rl r0 7XORr3rl
8 XOR r3 rd 8 XOR r2 r4 8 XOR rl r4 8 AND r4 r2 8 XOR r3 r4 8 AND rl 10
9 OR r4 r2 9 OR r4 r2 9 OR r4r3 9 XORrlr4 9 AND r4 r2 9 XOR rl r4
10 XOR r4 r0 10 XOR 10 r4 10 XOR r4 r0 10 XOR r2 r0 10 XOR r4 rl 10 AND r4 r3
11 OR r0 r3 11 OR 14 r3 11 AND r0 r1 11 AND r0 r3 11 AND r1 r8 11 OR r4 r2
12 XOR r0 r1 12 XOR rl1 r4 12 XOR r0 r2 12 OR 10 4 12 XOR r1 r2 12 XOR r0 r4
r0r2r3rd rQrl r2r3 r0rlr3r4d r0rl r2r3 r0rlr3rd 0 rl r2 r3

50

S-box 71 S-box 72 S-box 73 S-box 77 S-box 79 S-box 80
0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0
1 AND r0 rl 1 AND r0 r1 1 AND rOrl 1 AND 10 rl 1 AND r0 r1 1 AND r0 r1
2 XOR r0 r2 2 XOR r0 r2 2 XOR r0 r2 2 OR 10 r2 2 AND r0 r2 2 OR r0 r2
3 AND r2 r0 3 AND r2 r0 3 AND r2 10 3 XOR r0 r3 3 XOR r0r3 3 XOR r0 r3
4 XOR r2 r3 4 XOR r2 r3 4 XOR r2 r3 4 AND r3 r2 40R«r3rl 40Rr3rl
5 OR r3 r0 5 OR r3 r0 5 OR r3 r0 5 XOR rl r0 5 XOR rl r2 5 AND r2 r3
6 XOR r3rl 6 XOR r3rl 6 XOR r3 rl 6 XOR r3 rl 6 AND r2 r0 6 XOR r3 rd
7 AND rl r0 7 AND rl r2 7 AND rl r2 7 AND r1 13 7 XORr2r3 7 AND r4 r0
8 XOR r0 r4 8 XOR rl r4 8 XOR rlrd 8 XOR rl r4d 8 XOR r3 r4 8 XOR r4 r2
9 AND r4 r3 9 AND r4 r3 9 AND r4 r3 9 0OR r4 13 9 AND r4 r2 9 OR r2 r0
100OR r1r4d 10 XOR r2 r4 10 XOR r4 r2 10 XOR. r4 10 10 XOR rt r4 10 XOR rl r2
11 OR r4 r2 11 AND r4 r2 11 AND r2rl 11 OR r0 rl r0rl r2r3 rOrl r3 rd
12 XOR r0 r4 12 XOR r0 r4 12 XOR r0 r2 12 XOR r0 r2
r0rlr2 r3 r0rl r2r3 rOrl r3r4 r0 rl r3 r4
S-box 81 S-box 82 S-box 83 S-box 84 S-box 85 S-box 86
0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0
1 AND r0 r1 1 AND r0 rl1 1 AND 0 rl 1 AND r0 r1 1 AND r0 r1 1 AND r0 rl
2 XOR 10 r2 2 XOR r0 r2 2 AND r0 r2 2 AND r0 r2 2 XOR r0 r2 2 OR r0 r2
30Rr2rl 30Rr2rl 3 XOR r0 r3 3 XOR r0 r3 30Rr2rl 3AND r2rl
4 XOR r2 r3 4 XOR r2 r3 4 ORr3rl 4 0ORr3rl 4 XOR rl1 r0 4 XOR r0 r3
5 AND r3 r0 5 XOR r2 r4 5 AND rl r0 5 XOR r3 r2 5 XOR r2 r3 5 ORr3rl
6 XOR r0 r4 6 AND r4 r2 6 XOR rl r2 6 AND r2 r0 6 AND r3 r0 6 XOR r0 r4
70R 4 r3 7 OR r4 r0 7 AND r2 r0 7 XOR r2 r4 7XORr3r4 7 XOR rl 10
8 XOR rd rl 8 XOR r4 r3 8 XOR r2 r3 8 AND r4 r0 8 AND r4 r3 8 AND r0 r3
9 AND rl r2 9 AND r3 r2 9 XOR r3 r4 9 XOR rl r4 9 XOR r4 rl 9 OR r0 r2
10 OR r1 r3 10 XOR r1 r3 10 AND r4 r2 r0rl r2 r3 10 OR rl r3 10 XOR r3 r4
0rlr2rd r0rl r2r4 11 XOR r0 r4 11 XOR r0 r1 11 OR r4 r0
rOrl r2r3 r0r2 r3 r4 12 XOR r2 r4
r0rlr2r3
S-box 87 S-box 88 S-box 89 S-box 90 S-box 91 S-box 93
0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0
1 AND r0rl 1 AND r0 rl 1 AND r0 rl 1 AND r0 rl 1 AND 10 rl 1 AND r0 r1
2 0OR r0 r2 2 OR r0 r2 2 OR r0 r2 2 XOR r0 r2 2 XOR r0 r2 2 XOR 10 r2
3 AND r2rl 3 XOR r0 r3 3 XOR r0 r3 3 AND r2 r0 3 AND r2 r0 30Rr2ri1
4 XOR r4 r0 4 AND r3 r2 40Rr3rl 4 XOR rl r0 4 XOR rl1 r0 4 AND r2 r3
50RTrl r4 5 XOR rl r0 5 XOR r4 r0 5 XOR r2r3 5 XOR r2 r3 5 OR r3 r0
6 XOR r4 r3 6 XOR rl r3 6 XOR r3 r4 6 AND r3 rl 6 OR r3 r0 6 XOR rl1 r3
7 AND r3 r1 7 AND r3 rl 7 AND r4 r3 7 XOR r0 r2 7 XOR r3 rd 7 XOR r2 r4
8 XOR r0 r3 8 XOR r3 r4 8 XOR r4 r2 8 XOR r3 14 8 XOR rl r3 8 XOR r3 r2
9 OR r3 r2 90RTr4drl 9 AND r2 r3 9 AND r4 r3 9 AND r3rl 9 AND r3rl
10 XOR r2 r0 10 XOR r0 r4 10 XOR r0 r2 10 XOR r4 r2 10 XOR r0 3 10 XOR r3 r4
11 AND r0 r3 11 OR r4 r0 11 AND r2 r0 11 OR r2 r3 11 OR r3 r2 rOrl r2r3
12 XOR r0 r1 12 XOR 12 r4 12 XOR ri r2 12 XOR r1 r2 12 XOR r3 r4
r0 r2 r3 rd r0rlr2r3 r0rl r3rd rOrlr3rd r0rlr2r3
S-box 94 S-box 95 S-box 96 S-box 97 S-box 98 S-box 99
0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0
10ROl 1 AND r0 r1 1 AND r0 r1 1 AND r0 rl 1 AND r0rl 1 AND rO rl
2 XOR r0 r2 2 AND r0 r2 2 AND r0 r2 2 OR r0 r2 2 XOR r0 r2 2 XOR r0 r2
3 AND r2 rl 3 XOR r0 r3 3 XOR r0 r3 3 AND r2rl 3 AND r2 r0 3 AND r2 10
4 OR r2r3 4 0Rr3rl 4 OR r3rl 4 XOR rd r0 4 XOR r1 r0 4 XOR r1 r0
5 XOR r4 r2 5 XOR r3 r2 5 XOR r2 r0 5 OR rlr4 5 XOR r2 r3 5 XOR r2 r3
6 AND r2 r0 6 OR r2rl 6 XOR r2 r3 6 XOR r0 r3 6 AND r3 rl 6 AND r3rl
7 XOR rl r2 7 XOR r2 r4 7 AND r3 r2 7 OR r3 r2 7XORr3 r4 7XORr3r4
8 MOV r2rl 8 AND r4 r3 8 XOR r3 r4 8 XOR r2 r0 8 MOV r4 r2 8 MOV r4 r2
9 AND rl r4 9 XOR rlr4 9 OR r4 r2 9 XOR r4 r3 9 AND r2 r3 9 OR r2 r3
10 XOR r1 r3 10 AND r4 r0 10 XOR r0 r4 10 AND r3 rl 10 XOR r0 r2 10 XOR 10 r2
rOrlr2rd 11 XOR r2 r4 11 OR r4 r0 11 AND r0 r3 11 AND r2 r0 11 AND r2 r0
r0rl r2 r3 12 XOR rl r4 12 XOR r0 r1 12 XOR rl r2 12 XOR rl r2
rOrl r2r3 rOr2r3rd rO0rl r3rd r0rlr3rd

51

A. MOST EFFICIENT IMPLEMENTATIONS

S-box 100 S-box 101 S-box 102 S-box 103 S-box 104 S-box 106
0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0
1 AND r0 r1 1 AND rO r1 1 AND 10 rl 1 AND r0 r1 1 AND r0O r1 1 AND r0 r1
2 XOR r0 r2 2 XOR r0 r2 2 XOR r0 r2 2 XOR 10 r2 2 XOR 10 r2 2 XOR r0 r2
3 AND r2 r0 3 AND r2 r0 3 AND r2 10 3 AND r2 r0 3 AND r2 r0 3 AND r2 r0
4 XOR r1 r0 4 XOR r1 r3 4 XOR rl1 r3 4 XOR r2 r3 4 XOR r2 r3 4 XOR r0 r1
5 XOR r2 r3 5 XORr2rl 5 XOR r2 rl 5 AND r3 rl 5 OR r3 r0 5 XOR r2 r3
6 OR r3 r0 6 AND rl r0 6 AND rl r0 6 OR 13 10 6 XOR r0 rl 6 AND r3 r0
7 XOR rl r3 7 XOR rl r3 7XORrlrd 7 XOR r3 rd 7 AND r0 r3 7O0R rl1 3
8 XOR r3r4 8 XORrl1r4 8 XOR r3 r1 8 AND r4 r0 8 XOR r0 rd 8 XOR r3 r4
9OR r3rl 9 AND r3rl 9 AND rl r3 9 OR r4 r2 9 AND r4 r2 9 OR r4 r2
10 XOR r0 r3 10 XOR r0 r3 10 XOR r0 r1 10 XOR rl r4 10 XOR r3 r4 10 XOR r1 14
11 OR r3 r2 11 OR r3 r2 11 OR rl1 r2 11 AND 14 r3 11 AND r4 r0 r0rl r2 r3
12 XOR r3 r4 12 XOR r3 r4 12 XOR rl r4 12 XOR 10 r4 12 XOR rl r4
r0 rl r2r3 r0rl r2 r3 rOrl r2r3 r0 rl r2 r3 r0rl r2r3
S-box 107 S-box 108 S-box 109 S-box 110 S-box 111 S-box 112
0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0
1 AND r0 rl 1 AND r0 r1 1 AND r0 r1 1 AND r0 r1 1 AND r0 r1 1 AND r0 r1
2 XOR r0 r2 2 XOR r0 r2 2 XOR 10 r2 2 XOR 10 r2 2 AND 10 r2 2 OR r0 r2
3 AND r2 10 3 AND r2rl 30Rr2rl 30Rr2rl 3 XOR r0 13 3 XOR 10 r3
4 XOR r1 r0 4 XOR r2 13 4 XOR r2 r3 4 XOR r2 r3 40Rr3rl 4 0OR r3rl
5 XOR r2 r3 5 AND r3 r2 5 AND r3 r0 5 AND r3 r0 5 XOR r3 r2 5 XOR r1 r0
6 AND r3 rl 6 XOR r3 r0 6 XOR r3 r4 6 XOR r3 r4 6 AND r2 r0 6 XOR r3 r4
7 XOR r3 r4 7 AND r0 r2 7 AND r4 r2 7 AND r4 r2 7 XOR r2 r4 70R 14 r2
8 MOV r4 r2 8 XOR r0 r4 8 XOR r0 r4 8 XOR r4 rl 8 AND r4 r2 8 AND r4 10
9 AND r2 r3 9 OR rd 10 9 AND r4 r0 9 OR rl1 r3 9XORrdrl 9 XOR r4 r1
10 XOR rl r2 10 XOR rl1 r4 10 XOR rl1 r4 10 XOR rl r2 10 OR rl r2 10 OR rl1 r3
rOrl r3rd rOrl r2r3 r0rl r2 r3 r0rl r3 r4 11 XOR r0 r1 11 XOR rl r2

0r2r3rd r0rl r3 r4
S-box 113 S-box 114 S-box 115 S-box 116 S-box 119 S-box 120
0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0
1 AND 10 r1 1 AND r0 rl 1 AND r0 r1 1 AND r0 r1 1 AND r0 r1 1 AND r0 rl
2 OR r0 r2 2 XOR r0 r2 2 XOR 10 r2 2 XOR r0 r2 2 AND 10 r2 2 AND r0 r2
3 XOR r0 r3 3 AND r2 10 30Rr2rl 3 AND r2 r0 3 XOR r0 r3 3 XOR r0 r3
40R~r3rl 4 XOR r2 r3 4 XOR rl r3 4 XOR rl r0 40R r3rl 40Rr3rl
5 XOR r3 r4 5 OR r3 r0 5 AND r1 10 5 XOR r2r3 5 AND r3 r2 5 XOR r2 13
6 OR rd r1 6 XOR r1 r3 6 XOR r3 rd 6 OR r3 r0 6 XOR r3 r4 6 OR r3 r2
7 AND r4 10 7 XOR r3 r2 7 XOR r0 r3 7XORr3r4 7 AND r4 10 7 XOR r3 r4
8 XOR r2 r3 8 ORr3rl 8 AND r3 r2 8 OR r4 r3 80ORTr2r4 8 AND r4 r0
9 XOR r4 r3 9 XOR r3 r4 9 XOR r2 r1 9 XOR rd rl 9 XOR r4 r1 9 XOR r4 r2
10 OR r3 r0 10 AND rd r1 10 OR. r1 r3 10 AND rl1 r3 10 AND r1 13 10 AND r2 3
11 XOR r1 r3 11 XOR r2 r4 11 XOR r3 r4 11 OR rl r2 11 XOR rl r2 11 XOR rl r2
r0rl r2rd r0rl r2r3 r0rlr2r3 12 XOR r0 r1 r0rl r3 rd r0rlr3rd

0 r2 r3 r4
S-box 121 S-box 122 S-box 123 S-box 124 S-box 125 S-box 126
0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0
1 AND r0 rl 1 AND r0 rl 1 AND 0 rl 1 AND r0 r1 1 AND r0 r1 1 AND r0 r1
2 XOR r0 r2 2 XOR r0 r2 2 XOR r0 r2 2 XOR r0 r2 2 XOR r0 r2 2 XOR 10 r2
3 AND r2 r0 3 AND r2 r0 3 AND r2 10 3 AND r2 r0 3 AND r2 10 30Rr2r1
4 XOR r2 r3 4 XOR r2 r3 4 XOR r2 r3 4 XOR r2r3 4 XOR r3 r2 4 XOR r4 r2
5 OR r3 0 5 OR r3 r0 5 OR r3 r0 5 OR r3rl 5ORr2rl 5 AND r2 r4
6 XOR r0 r3 6 XOR r3 r1 6 XOR r3 rl 6 AND r3 r2 6 AND r2 r3 6 XOR r2 r3
7 XOR r3 r1 7 AND r1 r0 7 AND rl r0 7 XOR r3r4 7 XOR r2 rd 7 AND r3 10
8 OR rl r0 8 XOR rl r4 8 XOR rl r4 8 OR rd r2 8 ORr4 r3 8 XOR r1 r3
9 XOR rl r4 9 AND r4 13 9 OR rd r2 9 XOR r4 r0 9 XOR r4 r0 9 MOV r3rl
10 OR r4 r2 10 OR r4 r2 10 AND r4 r3 10 OR r0 r3 10 OR r0 r2 10 AND rl r2
11 XOR r0 r4 11 XOR 10 r4 11 XOR r0 r4 11 XOR r0 rl 11 XOR 0 rl 11 XOR r0 r1
rQrl r2r3 rOrl r2r3 r0rl r2r3 r0r2r3r4 r0 r2 r3 r4 r0r2 r3 r4
S-box 127 S-box 128 S-box 129 S-box 130 S-box 181 S-box 132
0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0
1 AND r0 rl1 1 AND r0 r1 1 AND r0 r1 1 AND r0 rl 1 AND r0 rl 1 AND r0 r1
2 XOR r2 r0 2 AND 0 r2 2 AND 10 r2 2 XOR r0 r2 2 XOR r0 r2 2 XOR 10 r2
3 AND r0 r2 3 XOR r0 r3 3 XOR 10 r3 3 AND r2 r0 3 AND r2 r0 3 AND r2 10
4 XOR r0 r3 40R1r3rl 4 0Rr3rl 4 XOR rl r0 4 XOR rl1 r0 4 XOR r2 r3
5 OR r3 r2 5 XOR rl r0 5 XOR rl r2 5 XOR r2 r3 5 XOR r2 r3 5 OR r3 r0
6 AND r2 r0 6 XOR r3 r2 6 AND r2 r0 6 OR r3 r0 6 OR r3 r0 6 XOR rl r2
7 XOR r2rl 7 AND r2 r0 7 XOR 10 r4 7 XOR r1 r3 7XORr3r4 7 XOR r3 r4
8 AND r1 r3 8 XOR r2 r4 8 AND r0 r3 8 OR r3 r1 8 AND r4 r3 8 AND r4 r0
9 XOR rl rd 9 AND r4 r2 9 XOR r1 r0 9 XOR r3 r4 9 XOR r4 r1 9 XOR r4 r1
10 AND r4 r0 10 XOR rd4 r1 10 OR r0 r2 10 XOR r4 r2 10 OR rl r3 10 AND rl 3
11 XOR r3 r4 11 OR rl r2 11 XOR r2 r3 11 AND r4 r1 11 XOR r0 r1 11 XOR r0 r1
r0rl r2 r3 12 XOR r0 r1 12 XOR 13 r4 12 XOR 10 r4 10 r2 r3 r4 r0r2 r3 r4
r0r2 r3 r4 r0rl r2r3 rQ rl r2 r3

52

S-box 133 S-box 134 S-box 135 S-box 136 S-box 137 S-box 138
0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0
1 AND r0 r1 1 AND r0r1 1 AND r0 ri 1 AND 10 rl 1 AND rO rl 1 AND r0 rl
2XOR r1r2 2 XOR r0 r2 2 XOR r0 r2 2 OR r0 r2 2 OR r0 r2 2 XOR r0 r2
30R rl 10 30R~r2rl 30R r2rl 3 XOR r0 r3 3 XOR r0 r3 3 AND r2 10
4 XOR rlr3 4 AND r2 r3 4 XOR r2 r3 4 OR r3rl 40RTr3rl 4 XOR rl r0
5 OR r3 r4 5 OR r3 r0 5 OR r2 r0 5 XOR rl1 r0 5 XOR r3 r0 5 XOR r2 r3
6 XOR rd4 rl 6 XOR rl r3 6 XOR r2 r4 6 XOR r3 r4 6 XOR r4 r3 6 OR r3 r0
7 AND r1 r3 7 AND r3rl 7 AND r4 r2 7 AND rd r2 7 AND r3rl 7 XOR r3 rd
8 OR rl r0 8 XOR r3 r4 8 XOR r4 r3 8 OR r4 r0 8 AND r3 r4 8 AND r4 r2
9 XOR r3 r2 9 AND rd rl 9 AND r3 r2 9 XOR rd4 rl 9 XOR r3 r2 9 XORrdrl
10 0OR r2rl 10 XOR r2 r4 10 XOR rl r3 10 AND rl r3 10 OR r2 r4 10 OR r1 r3
11 XOR r0 r2 rOrlr2r3 r0rl r2 r4 11 XOR rl r2 11 XOR rl r2 11 XOR r0 r1
r0rl r3 rd r0rlr3rd r0rl r3 rd r0r2r3rd
S-box 139 S-box 140 S-box 141 S-box 142 S-box 143 S-box 144
0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0
1 AND r0rl 1 AND r0 rl 1 AND r0 r1 1 AND r0 rl 1 AND r0 rl 1 AND r0 rl
2 XOR r0 r2 2 XOR 10 r2 2 XOR r0 r2 2 XOR r0 r2 2 XOR r0 r2 2 AND r0 r2
3AND r2r3 30Rr2rl 30Rr2rl 3 AND r2 r0 30Rr2r1 3 XOR r0 r3
40RT2rl 4 AND r2 r3 4 XOR rl r3 4 XOR r2r3 4 XOR r2 r3 4 0Rr3rl
5 XOR rl r0 5 OR r3 r0 5 AND rl r0 5 OR r3 r0 5 AND r3 r0 5 XOR r3 r2
6 XOR 13 r2 6 XOR rl1 r3 6 XOR rl r4 6 XOR r3 r1 6 XOR r3 r4 6 AND r2 r0
7 OR r0 r3 7 XOR r3 r4 7XOR r2r4 7 AND rl r2 7 AND r4 r3 7XORr2r4
8 AND r2 r0 8 AND r3rl 8 AND r4 r1 8 XOR rl r4 8 XOR rl r4 8 AND r4 13
9 XOR r3 r4 9 XOR r2 r3 9 XOR r4 r3 r0rl r2 r3 rOrl r2 r3 9 XOR rlr4
10 AND r4 r2 10 OR r3 r0 1I00R r3rl1 r0rlr2r3
11 XOR 10 r4 11 XOR r3 r4 11 XOR r0 r3
0rlr2r3 r0rl r2r3 r0 rl r2 rd
S-box 145 S-box 146 S-box 147 S-box 148 S-box 149 S-box 150
0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0
1 AND r0 rl 1 AND r0 rl 1 AND r0 rl 1 AND r0 rl 1 AND r0 rl 1 AND 10 r1
2 XOR r0 r2 2 XOR r0 r2 2 XOR r0 r2 2 XOR r0 r2 2 XOR r0 r2 2 XOR 10 r2
3 AND r2 r0 3 AND r2rl 30R r2rl 30R«r2rl 30Rr2r1 30Rr2rl
4 XOR rl1 r0 4 XOR r2 r3 4 AND r2 r3 4 XOR r1 r3 4 XORr2r3 4 XOR r2 r3
5 XOR r2 r3 5 AND r3 r2 5 OR r3 r0 5 AND rl r0 5 XOR r2r4 5 XOR r2 rd
6 OR r3 r0 6 XOR r3 r0 6 XOR rl r3 6 XOR rl r2 6 AND r3 r2 6 AND r4 r2
7XOR r3 r4 7 XOR r4 10 7XOR r2r4 7 XOR r2 r4 7 XOR rl r3 7 XORrlr4
8 AND r4 r2 8 OR 10 r2 8 AND r4 r0 8 AND rd rl 8 OR r3 r0 8 OR r4 r0
9 XOR r0 r4 9 XOR r0 r1 9 XOR r3 r4 9 XOR r3 r4d 9 XOR r3 r4 9 XOR r3 r4
r0rl r2 r3 r0r2r3 r4 0rlr2r3 r0rl r2r3 r0rl r2r3 r0rl r2 13
S-box 151 S-box 152 S-box 153 S-box 154 S-box 155 S-box 156
0 MOV r4 r0 0 MOV r4 10 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 10 0 MOV r4 r0
1 AND r0 rl 1 AND rO rl 1 AND r0 rl 1 AND r0 rl 1 AND r0 rl 1 AND r0 rl
2 AND r0 r2 2 OR r0 r2 20R Tl rd 2 XOR r0 r2 2 XOR 10 r2 2 XOR r2 r0
3 XOR r0r3 3 XOR r0 r3 3 XOR r0 r2 3ANDr2rl 3 AND r2 r0 3 AND r0 r2
40R~3rl 4 0OR3rl 4 AND r2 14 4 XOR r2 r0 4 XOR r2 r3 4 XOR r0 r3
5 XOR r1 r0 5 AND r3 r0 5 XOR r0 r3 5 XOR r2 r3 50R 3 rl 5 OR r3 r2
6 XOR r3 r2 6 XOR r3 r4 6 XOR rl r2 6 XOR r4 r0 6 XOR r3 r4 6 XOR rl r3
7 AND r2 r0 7 OR r4 r0 7 AND r2 r0 7 AND r0 r2 7 MOV r4 r2 7 AND r3 r1
8 XOR r2 r4 8 XOR r4 r1 8 XOR r2 r3 8 XOR r1 r0 8 AND r2 r3 8 XOR r3 r4
9 AND r4 r3 9 AND rl r3 9 OR r3 r0 9 AND r0 rd 9 XOR rl r2 9 OR r4 r0
10 XOR r0 r4 10 XOR rl r2 10 XOR r3 r4 10 XOR r0 r3 rOrl r3 r4 100R r4 rl
rOrlr2r3 rOrl r3 r4 rOrl r2r3 r0rl r2r4d 11 XOR r2 r4
r0rl r2r3
S-box 157 S-box 158 S-box 159 S-box 160 S-box 161 S-box 162
0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0
1 AND r0rl 1 AND r0 rl 1 AND 0 rl 1 AND r0rl 1 AND r0 rl 1 AND r0 r1
2 XOR r0 r2 2 AND r0 r2 2 AND r0 r2 2 OR 10 r2 2 XOR r0 r2 2 XOR r0 r2
3 AND r2 r0 3 XOR r0 r3 3 XOR r0 r3 3 XOR r0 r3 3 AND r2 r0 3 AND r2 10
4 XOR r1 r0 40R13rl 40R1r3rl 4 AND r3 r2 4 XOR rl 10 4 XOR rl r0
5 XOR r2 r3 5 XOR r2 r0 5 XOR r2 r0 5 XOR rl r0 5 XOR r2 r3 5 XOR r2 r3
6 AND r3 rl 6 XOR r2 r3 6 XOR r2 r3 6 XOR r1 13 6 OR r3 r0 6 OR r3 r0
7 XOR r3 r4 7 AND r3 r2 7 OR r3 r2 70Rr3rl 70R 1314 7 XOR rl r3
80ORr4rl 8 XOR r3 rd 8 XOR r3 r4 8 XOR r3 r4 8 XOR r3rl 8 AND r3rl
9 AND r4 r2 9 OR r4 r2 9 AND r4 r2 9 AND rd r1 9 AND rl r2 9 XOR r3 rd
10 XOR r0 r4 10 XOR r0 r4 10 XOR 0 r4 10 XOR r0 r4 10 XOR r0 r1 10 AND r4 r2
11 AND r4 r3 11 AND r4 r0 11 OR r4 r0 11 AND r4 r0 11 AND r1 r0 11 AND r4 3
12 XOR rl r4 12 XOR rl rd 12 XOR rl r4 12 XOR r2 r4 12XORrl1r4 12 XOR r0 r4
r0rlr2r3 rOrl r2 r3 r0rl r2r3 r0 rl r2 r3 r0rl r2 r3 r0rl r2 r3

53

A. MOST EFFICIENT IMPLEMENTATIONS

S-box 163 S-box 164 S-box 165 S-box 166 S-box 167 S-box 168
0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0
1 AND rOr1 1 AND r0 rt 1 AND r0 rl 1 AND r0 r1 1 AND r0 r1 1 AND r0 r1
2 AND r0 r2 2 AND r0 r2 2 OR r0r2 2 OR r0 r2 2 XOR 10 r2 2 AND r0 r2
3 XOR r0 r3 3 XOR r0 r3 3 XOR r0 r3 3 XOR r0 r3 3 XOR r0 r3 3 XOR r0 r3
40R r3rl 40Rr3rl 40R r3rl 40Rr3rl 4 AND r2 10 4 AND r3rl1
5 XOR r2 r0 5 XOR r2 r0 5 XOR r3 r4 5 XOR r3 r4 5 XOR rl r2 5 OR r3 r2
6 XOR r2 r3 6 XOR r2 r3 6 OR rd r2 6 MOV r4 r0 6 AND r2 r4 6 XOR r3 rd
7 AND r3 r2 7 OR r3 r2 7 AND r4 r0 7 AND 10 r3 7 XOR r2 r3 7 OR r4 r0
8 XOR r3 r4 8 XOR r3 r4 8 XOR rl r4 8 XOR r0 r2 8 AND r3 rl 8 AND r2 r4
9 OR r4 r2 9 AND r4 r2 9 OR r4 r3 9 OR r2 10 9 OR r3 r0 9 XOR r2 rl
10 XOR rl1 r4 10 XOR rl r4 10 XOR r2 r4 10 XOR rl r2 10 XOR 13 r4 10 AND rl 0
r0rl r2 r3 r0rl r2 r3 r0rl r2r3 rOrl r3 rd r0rl r2 r3 11 XOR rl r4
rOrl r2 r3
S-box 169 S-box 170 S-box 171 S-box 172 S-box 173 S-box 174
0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV 4 r0 0 MOV r4 r0 0 MOV r4 r0
1 AND r0 r1 1 AND r0 rl 1 OR r0 r1 1 AND r0 r1 1 AND r0 r1 1 AND r0 rl
2 AND r0 r2 2 AND r0 r2 2 XOR r0 r2 2 AND r0 r2 2 XOR r0 r2 2 XOR r0 r2
3 XOR 10 r3 3 XOR r0 r3 3 AND r2 10 3 XOR r0 r3 3 AND r2 r0 3 AND r2 r0
4 0Rr3rl 40Rr3rl 4 XOR r2 r3 40R~r3rl 4 XOR rl1 r0 4 XOR r2 r3
5 XOR rl r2 5 XOR r3 r2 5 OR r3 r0 5 XOR r3 r2 5 XOR r2 r3 5 OR 13 r0
6 AND rl r3 6 AND r2 r0 6 XOR rl r3 6 AND r2 r3 6 OR r3 r0 6 AND r0 r2
7XOR rl r4 7 XOR rl r2 70Rr3rl1 7 XOR r2 r4 7 XOR rl r3 7 XOR r0 r1
8 AND r4 r0 8 AND r2 r1 8 XOR r3 r4 8 AND r4 r0 8 AND r3 r1 8 AND rl r3
9 XOR r3 r4 9 XOR r2 r4 9 OR r4 r2 9 XOR r4 r3 9 XOR r3 r4 9 XOR rl r4
10 OR r4 rl 10 OR rd rl 10 AND r4 r1 10 OR r3 r2 10 AND r4 r2 10 AND r4 r2
11 XOR r2 r4 11 XOR r0 r4 11 XOR r0 r4 11 XOR r1 r3 11 XOR r0 r4 11 XOR r3 r4
r0 rl r2 r3 rOrl r2 r3 r0rl r2r3 rOrlr2rd r0rl r2r3 r0 rl r2 r3
S-box 175 S-box 176 S-box 177 S-box 178 S-box 179 S-box 180
0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0
1 AND 10 rl 1 AND r0 rl 1 AND r0 rl 1 AND r0rl 1 ANDr0r1 1 AND r0 r1
2 XOR r0 r2 2 XOR 10 r2 2 XOR r0 r2 2 XOR r0 r2 2 XOR r2 r0 2 OR r0 r2
3 AND r2 0 3 AND r2 r0 3 AND r2 r1 3 AND r2 r0 3 AND r0 r2 3ANDr2rl
4 XOR r2 r3 4 XOR r2 r3 4 XOR r3 r0 4 XOR r2 r3 4 XOR r0 r3 4 XOR r0 r4
5 OR r3 r0 5 OR r3 r0 5 XOR r2 r3 50RTr3rl 5 OR r3 r2 5 OR rl r0
6 AND r0 r2 6 XOR r0 r2 6 AND r3 r2 6 XOR r3 r4 6 XOR rl r2 6 XOR r0 r3
7 XOR r3 rl 7XORr3rl 7 XOR r3 r0 7 OR rd 10 7 XOR r3 rd 7OR r3 r2
8 OR rl r0 8 AND rl r2 8 AND r0 r2 8 OR r4 12 8 AND r4 r3 8 XOR r2 r3
9 XOR rl r4 9 XOR rl r4 9 XOR r0 r4 9 XOR r4 r3 9 XOR r4 rl 9 AND r3 rl
10 OR r4 r2 10 AND r4 r3 10 OR r4 r0 10 OR r3 10 10 OR rl1 r3 10 XOR r2 r4
11 XOR 10 r4 11 XOR r2r4 11 XOR rl r4 11 XOR r1 r3 11 XOR rl r2 11 AND r4 r3
rOrl r2 r3 r0rl r2 r3 rOrl r2 r3 r0rlr2rd r0rlr3r4 12 XOR rl r4
r0rl r2 r3
S-box 181 S-box 182 S-box 183 S-box 184 S-box 185 S-box 186
0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0
1 AND r0 r1 1 AND r0 r1 1 AND rOrl 1 AND r0rl 1 AND r0 r1 1 AND r0 rl
2 OR r0 r2 2 XOR r0 r2 2 AND r0 r2 2 OR r0 r2 2 XOR r0 r2 2 XOR r0 r2
3 AND r2r1 3 AND r2 r0 3 XOR r0 r3 3 XOR r0 r3 3 AND r2 r0 3 AND r2 r0
4 XORr0r4 4 XOR rl r0 40Rr3rl 40R~r3rl 4 XOR rl r0 4 XOR rl1 r0
5 XOR r3 r0 5 XOR r2 r3 5 XOR r2 r0 5 XOR r3 r4 5 XOR r2 r3 5 XOR r2 r3
6 XOR r1 r3 6 OR r3 r0 6 XOR r3 r4 6 MOV r4 r0 6 AND r3 rl 6 OR r3 r0
7OR rl r2 7XOR rl r3 7 AND r4 r3 7 AND 10 r3 7 XOR r3 r4 7 XOR r3 r4
8 XOR rd r1 8 AND r3 rl 8 XOR r4 r2 8 XOR 10 r1 8 MOV r4 r0 8 MOV r4 rl
9 OR r1 r0 9 XOR r3 r4 9 OR r2 r3 9 AND r1 r0 9 AND r0 r3 9 AND rl1 r3
10 XOR r2 r1 10 XOR r4 r2 10 XOR rl r2 10 XOR rl r2 10 XOR r0 rl 10 XOR r0 r1
11 0ORrlrd 110Rrdrl r0rlr3rd r0rlr3rd r0 r2 r3 r4 r0r2r3rd
12 XOR r0 r1 12 XOR 10 r4
rQr2 r3 rd r0 rl r2 r3
S-box 187 S-box 188 S-box 189 S-box 190 S-box 191 S-box 192
0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0
1 AND r0 r1 1 AND rO rl 1 AND r0 r1 1 AND r0rl 1 AND r0 r1 1 AND r0 r1
2 OR r0 r2 2 XOR r0 r2 2 XOR r2 r0 2 XOR r2 r0 2 XOR r2 r0 2 AND r0 r2
3 XOR 10 r3 3 AND r2rl 3 AND r0 r2 3 AND r0 r2 3 AND 10 r2 3 XOR 10 r3
4 0OR r3rl 4 XOR r2 r3 4 XOR r0 r3 4 XOR r0r3 4 XOR r0 r3 40R r3rl
5 XORr3r4 5 XOR r4 r0 5 OR r3 r2 5 OR r3 r2 5 OR r3 r2 5 XOR r2 r3
6 AND r4 r1 6 OR r3 r4 6 XOR r1 r0 6 XOR r3 r1 6 XOR r3rl 6 AND r3 r2
7 XOR r4 r2 7 XOR rl1 r3 7 XOR r3 r4 7 AND r1 r0 7 AND rl1 r0 7 XOR r3 rd
8 OR r4 r0 8 AND r3 r1 8 AND r4 r3 8 XORrlr4 8 XOR r1 r4 8 AND r4 10
9 XORrlr4 9 XOR r3 r0 9 XOR rd4 r1 9 AND r4 13 9 OR r4 r3 9 XOR rl r4
10 OR r4 r3 10 OR 10 r1 10 OR rl r3 10 XOR r2 r4 10 XOR r2 r4 rQrl r2 r3
11 XOR r2r4 11 XOR r0 r4 11 XOR r1 r2 r0 rl r2 r3 r0rl r2 r3
r0rl r2r3 rOrl r2r3 r0rl r3r4

54

S-box 193 S-box 194 S-box 195 S-box 196 S-box 197 S-box 198
0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0
1 AND rOrl 1 AND r0 rl 1 AND r0 r1 1 AND r0 r1 1 AND r0rl 1 AND r0 r1
2 AND r0 r2 2 XOR r2 r0 2 AND 10 r2 2 OR 10 r2 2 XOR r0 r2 2 XOR r0 r2
3 XOR r0 r3 3 AND r0 r2 3 XOR r0 r3 3 XOR r0 r3 3 AND r2 r0 3 AND r2 r0
4 0Rr3rl 4 XOR r0 r3 4 AND r3rl 4 AND r3 r2 4 XOR r2 r3 4 XOR r2 r3
5 XOR r2 r3 5 OR r3 r2 5 OR r3 r2 5 XOR rl r0 5 OR r3 r0 5 OR r3 r0
6 OR r3 r2 6 XOR rl1 r3 6 XOR r3 r4 6 XOR rl r3 6 XOR rl r3 6 XOR r1 r3
7 XOR r3 r4 70Rr3rl 7 AND r4 r3 7 AND r3 r1 7 AND r3rl 7OR r3rl
8 AND r4 r0 8 XOR r3r4 8 OR r4 r0 8 XOR r3 r4 8 XOR r3 r4 8 XOR r3 r4
9 XORrlrd 9 AND r4 rl 9 XOR rl r4 90R rdr1 90Rrdrl 9 AND r4 rl1
r0rlr2r3 10 OR r4 r0 10 ORr4rl 10 XOR r0 r4 10 OR r4 r2 10 OR r4 r2
11 XOR r2 r4 11 OR r4 r3 11 AND r4 r0 11 XOR r0 14 11 XOR 10 r4
r0rl r2 r3 12 XOR r2 r4 12 XOR r2 r4 rQrl r2r3 r0rl r2r3
rQrl r2 r3 r0rlr2r3
S-box 199 S-box 200 S-box 201 S-box 202 S-box 203 S-box 204
0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0
1 AND r0rl 1 AND r0 r1 1 AND r0rl 1 AND r0 rl 1 AND r0 rl 1 AND r0 rl
2 XOR r0 r2 2 XOR r2 r0 2 AND r0 r2 2 AND r0 r2 2 AND r0 r2 2 AND r0 r2
3 AND r2 r0 3 AND r0 r2 3 XOR r0 r3 3 XOR r0 r3 3 XOR r0 r3 3 XOR r0 r3
4 XOR r2r3 4 XOR r0r3 4 0Rr3rl 40R3rl 40R 31l 40R1r3rl
5 OR r3 r0 5 OR r3 r2 5 XOR r2 r3 5 XOR r2 r3 5 XOR r2 r3 5 XOR r3 r2
6 XOR rl1 r3 6 XOR rl r2 6 AND r3 r2 6 XOR r3 r4 6 XOR r3 rd 6 XOR r2 r4
70Rr31rl 7 XOR r1 r3 7 XOR r3 r4 7 AND r3 r2 7 OR rd r2 7 AND r2 r3
8 XOR r3 r4 8 AND r3 r1 8 AND r4 r0 8 XOR r1r3 8 XOR rl r4 8 XOR rl r2
9 OR r4 r2 9 XOR r3 r4 9 AND r4 r2 9 OR r3 r0 90R 4 r0 9 OR r2 10
10 AND r4 rl 10 ORr4 rl 10 XOR rl r4 10 XOR r3 r4 10 XOR r3 rd 10 XOR r2 r4
11 XOR r0 r4 11 XOR r2 r4 r0rl r2r3 r0rl r2r3 r0rl r2r3 r0rl r2 r3
r0rlr21r3 r0rl r2 r3
S-box 205 S-box 206 S-box 207 S-box 208 S-box 209 S-box 210
0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0
1 AND r0rl 1 AND rO rl 1 AND r0 rl 1 AND r0 rl 1 AND 10 rl 1 AND 10 r1
2 AND r0 r2 2 OR r0 r2 2 OR 10 r2 2 XOR r0 12 2 AND r0 r2 2 AND r0 r2
3 XOR r0 r3 3 XOR r0 r3 3 XOR r0r3 3 AND r2 r0 3 XOR r0r3 3 XOR r0 r3
40R13rl 4 0OR r3rl 4 OR r3rl 4 XOR rl1 r0 4 0Rr3rl 40Rr3rl
5 XOR r3 r0 5 XOR r3 r4 5 XOR r3 r4 5 XOR r2 r3 5 XOR rl r2 5 XOR rl r2
6 XOR r2 r3 6 AND r4 r2 6 MOV r4 r0 6 AND r3 rl 6 AND rl r3 6 AND r2 r3
7 AND r3 r2 7 OR 4 r0 7 OR 10 r3 7 XOR r3 r4 7XOR rlr4 7 XOR r2 r4
8 XOR r3 r4 8 XOR rl r4 8 XOR r0 r2 8 AND r4 r0 8 AND r4 r0 8 AND r4 10
9OR 4 r2 9 AND r4 r3 9 OR r2 r0 9 AND r4 r2 9 XOR r3 r4 9 XOR r3 r4
10 XOR r1 r4 10 XOR r2 r4 10 XOR rl r2 10 XOR rl r4 10 AND r4 r1 10 OR r4 r2
rOrlr2r3 r0rlr2r3 rOrlr3r4 r0rlr2r3 11 XOR r2r4 11 XOR rl r4
rOrl r2 r3 r0rlr2r3
S-box 211 S-box 212 S-box 213 S-box 214 S-box 215 S-box 216
0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0
1 AND r0O rl 1 AND r0 rl 1 AND r0 rl 1 AND r0 r1 1 AND r0rl 1 AND r0rl
2 AND r0 r2 2 XOR r0 r2 2 XOR r0 r2 2 XOR 10 r2 2 XOR r0 r2 2 XOR r0 r2
3 XOR r0r3 3 AND r2 r0 3 AND r2 r0 3 AND r2 r0 3 AND r2 r0 30RT2r1
40ORr3rl 4 XOR r2 r3 4 XOR r2r3 4 XOR r2 r3 4 XOR r2 r3 4 XOR r2 r3
5 XOR r2 r0 5 OR r3 10 5 OR r3 r0 5 OR r3 r0 5 OR r3 r0 5 AND r3 r0
6 XOR r3 r4 6 XOR rl r2 6 XOR r3 r1 6 XOR r3 rl 6 XORr3rl 6 XOR r1 r3
7 XOR r4 r2 7 XOR r3 r4 7 AND rl r2 7 AND rl r2 7 AND rl r0 7 AND r3 rl
8 OR r2 r3 8 AND r4 r3 8 XOR rl r4 8 XOR rl1 r4 8 XOR rlr4 8 XOR r3 r4
9 XOR rl r2 9 XOR r4 rl 9 AND r4 r3 9 OR r4 r3 r0rl r2r3 rOrlr2r3
10 OR r2 r0 10 OR r1 13 10 XOR r0 r4 10 XOR r0 r4
11 XOR r2 r4 11 XOR r0 r1 r0rl r2r3 r0rlr2r3
r0rlr2r3 rOr2 r3 rd
S-box 217 S-box 218 S-box 219 S-box 220 S-box 221 S-box 222
0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0
1 AND r0rl 1 AND r0 r1 1 AND r0 r1 1 AND r0 rl 1 AND r0 rl 1 AND 0 rl
2 XOR r0 r2 2 XOR r0 r2 2 XOR r0 r2 2 XOR r0 r2 2 AND r0 r2 2 AND r0 r2
3 AND r2 r0 3 AND r2 r0 3 XOR r0 r3 3 AND r2 r0 3 XOR r0 r3 3 XOR r0 r3
4 XOR r2 r3 4 XOR r2r3 4 AND r2 r0 4 XOR rl r0 4 OR r3 rl 40Rr3rl
5 OR r3 r0 5 OR r3 r0 5 XOR rl r2 5 XOR r2 r3 5 OR r3 r2 5 OR r3 r2
6 XOR r3 rl 6 XOR rl r3 6 AND r2 r4 6 OR r3 10 6 XOR r3 r4 6 XOR r3 r4
7 AND rl 10 7 AND r3rl 7 XOR r2 r3 7 XOR r1 r3 7 AND r4 r0 7 AND r4 r0
8 AND rt r2 8 XOR r3 r4 8 OR r3 r0 8 ORr3rl 8 XOR r1r4 8 XOR rl1 r4
9 XOR rl1 r4 rOrl r2 r3 9 XOR r3 r4 9 XOR r3 r4 9 AND r4 rl 90Rr4rl
10 AND r4 r3 r0rl r2r3 10 AND r4 r1 10 XOR r2 r4 10 XOR r2 r4
11 XOR r0 r4 11 XOR r0 r4 r0rlr2r3 r0rl r2r3
r0rlr2r3 rOrlr2r3

55

A. MOST EFFICIENT IMPLEMENTATIONS

S-box 223 S-box 224 S-box 225 S-box 226 S-box 227 S-box 228
0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0
1 AND 0 rl 1 AND r0 r1 1 AND r0rl 1 AND r0 r1 1 AND r0rl 1 AND r0Orl
2 XOR r0 r2 2 AND r0 r2 2 XOR r0 r2 2 XOR r0 r2 2 XOR r0 r2 2 AND r0 r2
30Rr2r0 3 XOR r0 r3 3 AND r2 r0 3 AND r2 r0 3 MOV r2 r0 3 XOR r0 r3
4 XOR r2r3 40Rr3rl1 4 XOR rl r3 4 XOR r2 r3 4 AND r0 r3 4 AND r3 rl
5 AND r3 r0 5 OR r3 r2 5 XOR r2 rl 5 OR r3 r0 5 XOR r0 rl 5 OR r3 r2
6 XOR rl r3 6 XOR r3 r4 6 AND rl r0 6 XOR rl1 r2 6 AND r1 r0 6 XOR r3 r4
70Rr3rl 7 AND r4 r0 7 XOR rl r3 7 XOR rl1 r3 7 XOR rlr4 7 AND r4 r0
8 XOR r3 r4 8 AND rd rl 8ORr3rl 8 ORr3rl 8 OR r4 r0 8 AND r4 r2
9 AND r4 rl 9 XOR r4 r2 9 XOR r3 rd 9 XOR r3 r4 9 XOR r3 r4 9 XOR rd rl
10 OR r4 r2 10 OR r2 r0 10 AND r4 r1 10 AND r4 r1 rOrlr2r3 10 AND rl 10
11 XOR r0 r4 11 AND r2 r3 11 XOR 10 r4 11 XOR r0 r4 11 AND rl 13
r0rl r2 r3 12 XOR rl r2 r0rl r2 r3 r0rlr2r3 12 XOR rl r2
r0rlr3 rd r0 rl r3 r4d
S-box 229 S-box 230 S-box 231 S-box 232 S-box 233 S-box 234
0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0
1 AND r0rl 1 AND 0 rl 1 AND r0 rl 1 AND r0 r1 1 AND r0 rl 1 AND r0 r1
2 XOR r0 r2 2XORr2r0 2 XOR r0 r2 2 OR r0 r2 2 XOR r0 r2 2 XOR r0 r2
3 AND r2 r0 3 AND r0 r2 3 AND r2 10 3 XOR r3 r0 30R2r1 30Rr2rl
4 XOR r2 r3 4 XOR r0 r3 4 XOR r2 r3 40Rr0rl 4 XOR r2 r3 4 XOR r2 r3
5 AND r3rl 5 OR r3 r2 5 OR r3 r0 5 AND r0 r3 5 AND r3 r0 5 AND r3 r0
6 OR r3 r0 6 XOR rl r3 6 XOR rl r3 6 XOR r0 r4 6 XOR r3 r1 6 XOR rl r3
7XOR r3r4 7 AND r3rl 7 AND r3 r1 70R r413 7 AND r1 r2 7 AND r3 r1
8 AND r4 r0 8 XOR r3 r4 8 XOR r3 r4 8 XOR r4 r2 8 XORrlr4 8 XOR r3 r4
9 AND r4 r2 9OR 4 r1 90R rdrl 9 AND r2 r0 9 OR r4 r3 9 XOR r4 r2
10 XOR rl1 r4 10 XOR r2 r4 10 XOR r0 r4 10 XOR r1 r2 10 XOR r0 r4 10 OR rd4 r1
rO rl r2 r3 r0rlr2r3 rOrl r2r3 rOrlr3rd r0rl r2 r3 11 XOR r0 r4
r0rl r2r3
S-box 235 S-box 236 S-box 237 S-box 238 S-box 239 S-box 240
0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV rd r0 0 MOV r4 r0 0 MOV r4 r0
1 AND r0 rt 1 AND rO r1 1 AND r0 rl 1 AND r0 r1 1 AND r0r1 1 AND 0 r1
2 AND 10 r2 2 AND 10 r2 2 AND r0 r2 2 OR r0 r2 2 AND r0 r2 2 AND r0 r2
3 XOR r0 r3 3 XOR 10 r3 3 XOR r0 r3 3 XOR r2 r3 3 XOR r0 r3 3 XOR r0 r3
40R r3rl 4 0OR 3 rl 40R r3rl 4 AND r2 r1 40Rr3rl 40R r3rl
5 XOR r3 r2 5 XOR r3 r2 5 XOR r2 r3 5 XOR r2 r3 5 XOR r2 r3 5 XOR r2 r3
6 AND r2 r0 6 AND r2 r0 6 AND r3 r2 6 XOR r3 r0 6 AND r3 r2 6 AND r3 r2
7 XOR r2 rd 7XORr2r4 7 XOR r3 r4 7 OR r0 r2 7 XOR r3 r4 7XORr3r4
8 AND r4 r2 8 OR r4 r2 8 OR rd4 r2 8 XOR rl r0 8 AND r4 r0 8 OR r4 r0
9 XOR rl r4 9 XORrlr4 9 AND r4 r0 9 XOR r3 r4 9 AND r4 r3 9 OR r4 r2
r0rl r2 r3 r0 rl r2 r3 10 XOR r1 r4 10 AND 10 r3 10 XOR r1 r4 10 XOR rl1 r4
r0rl r2 r3 11 XOR 10 r4 10 rl r2 r3 rOrl r2 r3
r0rl r2r3
S-box 241 S-box 242 S-box 243 S-box 244 S-box 245 S-box 246
0 MOV r4 10 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0
1 AND r0 rl 1 AND rO r1 1 AND r0 r1 1 AND r0 rl 1 AND r0 rl 1 AND 10l
2 OR r0 r2 2 XOR r0 r2 2 XOR r0 r2 2 AND rQ r2 2 XOR r0 r2 2 XOR r0 r2
3 XOR r0 r3 3 AND r2 r0 30R 2l 3 XOR r0 r3 3 AND r2 r0 30RTr2rl
4 AND r3 r2 4 XOR r2 r3 4 XOR r2 13 40Rr3rl 4 XOR r2r3 4XOR r2r4
5 XOR rl r3 5 AND r3 rl 5 AND r3 r2 5 XOR r2 r3 5 OR r3r0 5 AND r4 r3
6 OR r3 rl 6 OR r3 r0 6 XOR r3 r4 6 AND r3 r2 6 XOR r3r1 6 OR r4 10
7 XOR r3 r4 7 XOR r3 r4 7 AND r4 r0 7 XOR 14 r3 7 AND rl r2 7 XOR r4 r2
8 AND r4 r1 8 AND r4 r3 8 XORrir4 8 AND r3 r0 8 XOR rl r0 8 AND r2 r3
9 OR r4 r0 9 OR r4 r2 rOrl r2 r3 9 XOR rl1 18 9 OR r0 r4 9 XOR rl r2
10 XOR r2 r4 10 XOR r1 r4 rOrl r2r4 10 AND r0 r3 rOrl r3 r4
rOrl r2r3 r0 rl r2 r3 11 XOR r0 r2
rOrl r3 rd
S-box 247 S-box 248 S-box 249 S-box 250 S-box 251 S-box 252
0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0
1 ANDr0rl 1 AND r0 rl1 1 AND r0 r1 1 AND r0 rl 1 AND r0 r1 1 AND r0 rl
2 XOR 10 r2 2 XOR 10 r2 2 XOR r0 r2 2 OR r0 r2 2 XOR r0 r2 2 XOR r0 r2
3 XOR rl r0 3ANDr2r1 3 AND r2r1 3 ANDr2rl 3 AND r2 r3 30R«2rl
4 MOV r2 r0 4 XOR r2 r3 4 XOR r2 r3 4 XOR r2 r3 40Rr2rl 4XORrlr4
5 AND r0 r3 5 AND r3 r0 5 AND r3 r2 5 AND r3 r4 5 XOR r1 13 5 XOR r2 r3
6 XOR r0 r4 6 XOR rl r3 6 XOR r3 r0 6 XOR r0 r3 6 AND rl r0 6 AND r3 r0
7 AND r4 r0 70R1r3r4 7 AND r0 r2 7 OR r3 r2 7XORrl r4 7 XOR r3 rl
8 XOR r4 r1 8 XOR r2 r3 8 XOR r0 r4 8 AND r3 r0 8 AND r4 r3 8 AND rl r2
9 OR rl r0 r0rl r2 rd r0rl r2 r3 9 XOR rl r3 9 XOR r2r4 9 XOR 10 rl
10 XOR ri r2 r0rl r2rd r0 rl r2 r3 r0r2 r3 rd
r0rlr3rd

56

S-box 253 S-box 254 S-box 255 S-box 256 S-box 257 S-box 258
0 MOV r4 10 0 MOV r4 r0 0 MOV r4 10 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0
1 ANDrOrl 1 AND rOrl 1 AND 0 r1 1 AND r0Orl 1 ANDrOrl 1 AND r0 r1
2 XOR r0 r2 2 XOR r0 r2 2 XOR r0 r2 2 XOR 10 r2 2 XOR r0 r2 2 XOR r0 r2
30R~r2rl 30R~2rl 3ANDr2rl 30RTr2rl 30R2rl 3 AND r2r1
4 XOR r2 r3 4 XOR r2 r3 4 XOR r2 r3 4 XOR rl r3 4 XOR r2 r3 4 XOR r2 r3
5 AND r3 r0 5 AND r3 r0 5 MOV r3 r2 5 AND rl r0 5 XOR r4 r3 5 OR r3rl
6 XOR rl r3 6 XOR r3 r4 6 AND r2 r4 6 XOR rl r2 6 AND r3 r0 6 XOR r3 r4
0rl r2rd r0rl r2 r3 7 XOR r1 r2 7 XOR r2 r4 7 XOR rl r3 rOrl r2r3
r0rlr3rd r0rl r2 r3 r0rl r2rd
S-box 259 S-box 260 S-box 261 S-box 262 S-box 263 S-box 264
0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0
1 AND r0 rl 1 AND r0rl 1 AND r0O rl 1 AND r0 r1 1 AND rO r1 1 AND r0 rl
2 AND r0 r2 2 OR r0 r2 2 OR r0 r2 2 OR r0 r2 2 XOR r0 r2 2 XOR 10 r2
3 XOR r0 r3 3 XOR r0 r3 3 XOR r0 r3 3 XOR r0 r3 3 ANDr2rl 3 AND r2 r0
40R13rl 4 0ORr3rl 40R«3rl 40Rr3rl 4 AND r2 r3 4 XOR r0 rl
5 XOR r2 r0 5 XOR r3 r4 5 AND r2 r3 5 XOR r3 r4d 5 XOR r2 r0 5 XOR r2 r3
6 XOR r2 r3 6 AND r4 r0 6 XOR r3 r4 6 MOV r4 r0 6 XOR r4 r0 6 AND r3 r0
7 AND r3 r2 7 AND r4 r2 7 AND r4 r0 7 AND r0 r3 7 OR r0 r3 7 XOR r3 r4
8 XOR r3 r4 8 XOR r4 r3 8 XOR r2 r4 8 XOR r0 rl 8 XOR r0 r1 8 MOV r4 r2
9 OR r4 r2 9 AND r3 r0 rOrlr2r3 r0r2r3r4 r0r2 r3 rd 9 AND r2 r3
10 XOR 10 r4 10 XOR r1 r3 10 XOR r0 r2
r0rl r2 r3 r0rl r2 r4 rOrl r3rd
S-box 265 S-box 266 S-box 267 S-box 268 S-box 269 S-box 270
0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0
1 AND r0r1 1 AND r0 r1 1 AND 0 rl 1 AND 10 r1 1 AND r0rl 1 AND 10 rl
2 XOR r0 r2 2 XOR r0 r2 2 XOR r0 r2 2 XOR r0 r2 2 XOR r0 r2 2 OR r0 r2
3 AND r2rl 3 AND r2 r0 30ORTr2rl 3 XOR r0 r3 3 AND r2 r0 3 XOR r3 r0
4 AND r2 r3 4 XOR r2 r3 4 AND r2 r3 4 AND r2 r0 4 XOR r3 r2 4 0OR10rl
5 XOR r2 r0 5 OR r3 r0 5 XOR r4 r2 5 XOR rl r2 50Rr2rl 5 AND r0 r3
6 AND r0 r3 6 XOR rl r3 6 AND r2 r0 6 AND r2 r4 6 XOR r2 r4 6 XOR r0 r4
7 XOR r0r4 r0 rl r2 r4 7 XOR rl r2 7 XOR r2 r3 7 AND r4 r0 7 OR r4 r3
8 OR r4 r0 rOrl r3rd r0 rl r2 r4 8 XOR rl r4 8 XOR r4 r2
9 XOR rl r4 rO0rl r2r3 9 AND r2 r0
rOrl r2 r3 10 XOR r2 r3
rQrl r2rd
S-box 271 S-box 272 S-box 273 S-box 274 S-box 275 S-box 276
0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0
1 AND rOrl 1 AND r0 rl 1 AND 0 rl 1 AND r0 rl 1 AND r0 rl 1 AND r0 rl
2 XOR 10 r2 2 OR r0 r2 2 AND r0 r2 2 AND r0 r2 2 AND r0 r2 2 AND r0 r2
3AND r2rl 3 XOR r0 r3 3 XOR r0 r3 3 XOR r0 r3 3 XOR r0 r3 3 XOR r0 r3
4 XOR r2 r3 4 0Rr3rl 4 AND r3 rl 4 OR r3rl 4 AND r3rl 4 AND r3 rl
5 0R r3rl 5 AND r2 r3 5 OR r3 12 5 AND r3 r2 5 OR r3 r2 5 OR r3 r2
6 XOR r3 r0 6 XOR r3 r4 6 XOR r3 r4 6 XOR r3 r4 6 XOR r3 r4 6 XOR r3 r4
7 AND r3 r4 70R rd rl 7 OR r4 10 7 AND r4 r0 7 AND r4 r3 7 AND r4 r0
8§ XOR rl1 r3 8 XOR r2 r4 8 XOR r1r4 8 XOR rl r4 8 OR r4 r0 8 AND r4 r2
9 OR r3 r2 9 OR r4 r0 rOrl r2r3 r0rlr2r3 9 XORrlr4 9 XOR rl rd
10 XOR r0 r3 10 XOR r3 r4 rOrl r2 r3 r0rlr2r3
rOrlr2rd r0rlr2r3
S-box 277 S-box 278 S-box 279 S-box 280 S-box 281 S-box 282
0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0
1 AND r0rl 1 AND r0 r1 1 AND rO rl 1 AND r0 rl 1 AND rO rl 1 AND r0 rl
20R 10 r2 2 OR 10 r2 2 AND r0 r2 2 AND r0 r2 2 AND r0 r2 2 AND 10 r2
3 XOR r0r3 3 XOR r0 r3 3 XOR r0 r3 3 XOR r0 r3 3 XORr0r3 3 XOR r0 r3
40Rr3rl 40RTr3rl 40R3r1 4 OR r3rl 4 0R r3rl 4 AND r3 r1
5 AND r3 r4 5 XOR r3 r4 5 XOR r3 r2 5 AND r3 r2 5 AND r3 r2 5 OR r3 r2
6 XOR r3 r0 6 OR r4 r0 6 AND r2 r0 6 XOR r4 r3 6 XOR r3 rd 6 XOR r3 rd
7 AND r0 r4 7 AND r4 rl 7 AND r2 r4 7 AND r3 r0 7 AND r4 r0 7 AND r4 r0
8 XOR r0 r2 8 XOR r2 r4 8 XOR rl r2 8 AND r3 r4 8 AND r4 r2 8 AND rd r1
9 AND r2 r0 r0rl r2r3 rOrl r3 rd 9 XOR rl r3 9 XORrlr4 9 XOR r2 r4
10 XOR rl 12 rOrlr2r4 r0rl r2r3 rOrl r2r3
rOrl r3 r4
S-box 283 S-box 284 S-box 285 S-box 286 S-box 287 S-box 288
0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 10 0 MOV r4 r0 0 MOV r4 r0
1 AND r0 rl 1 AND r0rl 1 AND r0 ri 1 AND 0 rl 1 AND rO rl 1 AND r0 rl
2 AND r0 r2 2 AND r0 r2 2 XOR r0 r2 2 AND r0 r2 2 XOR r0 r2 2 XOR r0 r2
3 XOR r0 r3 3 XOR r0 r3 3 AND r2 r0 3 XOR r0 r3 3 AND r2 r0 30Rr2rl
40R3rl 4 OR r3rl 4 XOR r2 r3 40RT3rl 4 XOR r2 r3 4XOR r2r4
5 XOR r3 r2 5 XOR r3 r2 5 ORr3rl 5 XOR r2 r3 5 AND r3rl 5 AND r4 r0
6 AND r2 r0 6 AND r2 r0 6 XOR r3 r4 6 AND r3 r2 6 OR r3 r0 6 XOR rl r4
7 XOR rl1 r2 7 XOR r2 r4 r0rl r2 r3 7 XOR r3 r4 7XORr3r4 r0rl r2r3
rOrlr3 rd r0rl r2 r3 rOrl r2 r3 rOrl r2 r3

57

A. MOST EFFICIENT IMPLEMENTATIONS

S-box 289 S-box 290 S-box 291 S-box 292 S-box 293 S-box 294
0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0
1 AND r0 rl 1 AND 0 r1 1 AND 10 rl 1 AND 10 rl 1 AND r0 r1 1 AND r0 r1
2 XOR r0 r2 2 XOR r0 r2 2 XOR r0 r2 2 XOR r0 r2 2 OR r0 r2 2 AND r0 r2
30RTr2rl 3 AND r2 r0 3 AND r2rl 3 MOV r2r0 3 AND r2 r1 3 XOR r0 r3
4 XOR r2 r4 4 XOR r3 r2 4 AND r2 r3 4 AND r0 r3 4 XOR r2 r3 4 AND r3 r1
5 AND r4 r0 5 OR r2r1 5 XOR r2 r0 5 XOR r0 r1 5 AND r3 r1 5 OR r3 r2
6 XOR r3 r4 6 XOR r2 r4 6 AND r0 r3 rOr2r3rd 6 XOR r0 r3 6 XOR r3 r4
r0rlr2r3 rOrl r2 r3 7 XOR r0 r4 70Rr3r4 rOrl r2r3
r0rl r2r3 8 XOR r2 r3
r0rlr2r4

S-box 295 S-box 296 S-box 297 S-box 298 S-box 299 S-box 300
0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0 0 MOV r4 r0
1 AND r0 rl 1 AND r0 rl 1 AND r0 r1 1 AND r0 rl 1 AND r0rl 1 AND r0 rl
2 AND r0 r2 2 OR r0 r2 2 XOR r0 r2 2 XOR r0 r2 2 XOR r0 r2 2 AND r0 r2
3 XOR r0 13 3 XOR r0 r3 3 AND r2 r1 30Rr2rl 3 AND r2 r0 3 XOR r0 r3
40R13rl 4 AND r3 rl 4 XOR r2 r3 4 XOR r2r4 4 XOR r2 13 r0rl r2 r4
5 XOR r2 r3 5 AND r3 r4 rOrl r2r4d r0rl r2 r3 r0rl r2r4
r0rlr2r4 6 XOR r2 r3

r0rl r2 rd
S-box 301 S-box 302
0 MOV r4 r0 r0rlr2r3
1 AND r0 rl
2 XOR r0 r2
r0 rl r3 r4

58

Appendix B

Extended table of all classes

In the following tables the representatives are listed. Next to the linear (c), the non-linear (p) histogram and the
implementation cost we present the size of the class, the branch number (bn) of the representative, the maximum
algebraic degree of the output bits (deg) and the class of the inverses of the s-boxes (inv).

TABLE B.1: Most efficient implementations with additional details 1-30

Representative |¢|=1/4 1/2 3/4 1 p=1/8 1/4 3/8 1/2 5/8 3/4 7/8 1 cost size of class bn deg inv

1 ? 120 30 0 1 90 15 0 0 0 0 0 1 7 104044953600 7 3 ?
2 ? 120 30 0 1 9 15 0 o0 0 o0 0 1 7 26011238400 7 3 ?
3 7 120 30 0 1 9 15 0 0 0 0 0 1 7 1734082560 7 3 ?
4 7 120 30 0 1 9 15 0 0 0 0 0 1 7 26011238400 7 3 ?
5 ? 120 30 0 1 9 15 0 0 o0 o0 0 1 7 20808990720 7 3 ?
6 ? 120 30 0 1 9 15 0 o0 0 0 0 1 7 8670412800 7 3 ?
7 ? 120 30 0 1 9 15 0 0 0 0 0 1 7 20808980720 7 3 ?
8 ? 120 30 0 1 9 15 0 o0 o0 0 0 1 7 20808990 720 ? 3 ?
9 0Ocabf9d4e8635172 112 32 0 1 8 18 0 0 0 0 0 1 11 104044953600 2 3 10
10 01298bd7cfe654a3 112 32 0 1 8 18 0 0 0 0 0 1 12 104044953600 2 3 9
11 0a43562edfblc789 112 32 0 1 8 18 0 0 0 0 0 1 13 104044953600 2 3 11
12 7 112 32 0 1 84 18 0 0 0 0 0 1 7 104044953600 7 3 ?
13 086d51f7c4e2391ba 96 36 0 1 72 24 0 0 0 0 0 1 9 26011238400 2 3 13
14 086c7e5£4d21b3%a 9% 36 0 1 72 24 0 0 0 0 0 1 10 26011238400 2 3 15
15 0845d7fec6a391b2 9% 36 0 1 72 24 0 0 0 0 0 1 10 26011238400 2 3 14
16 01a2987cdef4563b 9% 36 0 1 72 24 0 0 0O 0 0 1 11 26011238400 2 3 16
17 ? 120 30 0 1 93 12 1 0 0 0 0 1 7 104044953600 7 3 ?
18 02839b7eca6bdfld 12 32 0 1 8 15 1 0 6 0 0 1 12 104044953600 2 3 20
19 04afb6372e81c95d 112 32 0 1 8 15 1 0 0 0 0 1 12 104044953600 2 3 ?
20 02415f3e8bc6a9d7 12 32 0 1 8 15 1 0 0 0 0 1 12 104044953600 2 2 18
21 0251c6afd7984e3b 12 32 0 1 87 15 1 0 0 0 0 1 13 104044953600 2 3 21
22 ? 12 32 0 1 87 15 1 0 0 0 0 1 7 104044953600 7 3 ?
23 ? 120 30 0 1 9% 9 2 0 0 0 0 1 7 26011238400 7 3 ?
24 ? 120 30 0 1 %6 9 2 0 0 0 0 1 7 26011238400 7 3 7
25 0c69735248afldbe 96 36 0 1 7% 18 2 0 0 0 0 1 11 52022476800 2 2 26
26 06a953b842c7dfle 96 36 0 1 78 18 2 0 0 0 0 1 11 52022476800 2 2 25
27 0a2387bfcbded961 9% 36 0 1 78 18 2 0 0 0 0 1 12 52022476800 2 2 29
28 0a2387bf4db6cled 9% 36 0 1 7 18 2 0 0 0 0 1 12 52022476800 2 2 28
29 0913a4bf2e6587dc 96 36 0 1 78 18 2 0 0 0 0 1 12 52022476800 2 3 27
30 06af7d5e48c391b2 9% 36 0 1 81 15 3 0 0 0 0 1 11 104044953600 2 3 30

59

EXTENDED TABLE OF ALL CLASSES

TABLE B.2: Most efficient implementations with additional details 31-84

Representative |c[=1/4 1/2 3/4 1 p=1/8 1/4 3/8 1/2 5/8 3/4 7/8 1 cost size of class bn deg inv
31 04598cebBa72£3d1 96 36 0 1 8 18 o0 1t 0 0 0 1 11 26011238400 2 3 31
32 08a319£4c6e5d7b2 64 4 0 1 64 24 0 2 0 0 0 1 9 13005619200 2 3 33
33 086d5f7e4c2193ba 64 4 0 1 64 24 0 2 0 0 0 1 9 13005619200 2 2 32
34 ? 19 28 1 1 w21 0 0 0 0 0 1 °? 14863564800 7 3 ?
35 ? 119 28 1 1 721 0 0 0O 0 O 1 7 104044953600 7 3 ?
36 ? 119 28 1 1 21 0 0 0 0 0O 1 7 104044953600 ? 3 ?
37 03298bd5efc476al 11 30 1 1 72 24 0 0 0 0 0 1 1 52022476800 2 3 37
38 03d741985ec621ab 11 30 1 1 2 24 0 0 0 0 0 1 12 52022476800 2 3 38
39 0e8952d7cadb61£3 19 28 1 1 8 18 1 0 0 0 0 1 13 104044953600 2 3 39
40 0283dbdeca769f15 19 28 1 1 81 18 1 0 0 0 0 1 13 104044953600 2 3 40
41 ? 119 28 1 1 81 18 1 0 0 0 0 1 ? 104044953600 ? 3 ?
42 ? 119 28 1 1 81 18 1 0 0 0 0 1 ? 104044953600 7 3 ?
43 0c2784fab961e3db 1 30 1 1 ™ 21 1 0 0 0 -0 1 12 104044953600 2 2 4
44 0c4d9fbaBe635172 11 30 1 1 20 1 0 0 0 0 1 12 104044953600 2 3 43
45 06abcB84e79£2d153 1mr 3 1 1 75 21 1 0 0 0 0 1 12 104044953600 2 3 45
46 0d9163e5fb7ac842 119 28 1 1 84 15 2 0 0 0 0 1 13 104044953600 2 3 ?
47 ? 19 28 1 1 84 15 2 0 0 0 0 1 7 104044953600 ? 3 ?
48 7 19 28 1 1 8 15 2 0 0 0 0 1 7 104044953600 7 3 ?
49 ? 19 28 1 1 8 15 2 0 0 0 0 1 ? 104044953600 7 3 ?
50 ? 19 28 1 1 8 15 2 0 0 0 0 1 7 104044953600 ? 3 ?
51 0283db7eca659f14 1mr 30 1 1 78 18 2 0 0 0 0 1 11 104044953600 2 3 63
52 0285cf4b9a36de7l 1t 30 1 1 7 18 2 0 0 0 0 1 11 104044953600 2 3 59
53 0c3e97af86d4512b 11 30 1 1 7 18 2 0 0 0 0 1 12 104044953600 2 3 70
54 038a75dbcf6el1294 11 30 1 1 78 18 2 0 0 0 0 1 12 104044953600 2 3 54
55 038a64dbcf7e1295 11 30 1 1 78 18 2 0 0 0 0 1 12 104044953600 2 3 55
56 0481e37d6afbc952 1 30 1 1 7 18 2 0 0 0 0 1 12 104044953600 2 3 57
57 04987bcf6ad251e3 111 30 1 1 18 2 0 0 0 0 1 12 104044953600 2 3 56
58 0c2db39a6e857f14 i1 30 1 1 7 18 2 0 0 0 0 1 12 104044953600 2 3 58
59 086e7d5c4f21b39a mr 30 1 1 7 18 2 0 0 0 0 1 12 104044953600 2 3 52
60 0cf1634b9d25a78e mr 30 1 1 78 18 2 0 0 0 0 1 12 104044953600 2 3 66
61 0a24193685def7bc 11 30 1 1 8 18 2 0 0 0 0 1 12 52022476800 2 3 62
62 0a23486519dcfb7e 11 30 1 1 8 18 2 0 0 0 0 1 12 52022476800 2 3 6l
63 04£28d617be3c96a 111 30 1 1 78 18 2 0 0 0 0 1 13 104044953600 2 3 51
64 0Ocfbae138594726d 11 30 1 1 78 18 2 0 0 0 0 1 13 104044953600 2 3 ?
65 0Odebaf129584736¢ ur 3 1 1 78 18 2 0 0 0 0 1 13 104044953600 2 3 65
66 07d9afb4becB86231 11 30 1 1 7 18 2 0 0 0 0 1 13 104044953600 2 3 60
67 0ae36592748cdf1b 11 30 1 1 78 18 2 0 0 0 0 1 13 104044953600 2 3 ?
68 086293efc7bbd4al 1mr 30 1 1 7 18 2 0 0 0 0 1 13 104044953600 2 3 73
69 04816aced372£95b 11 30 1 1 7 18 2 0 0 0 0 1 13 104044953600 2 3 69
70 0281dfSbce679a34 11 30 1 1 78 18 2 0 0 0 0 1 13 104044953600 2 3 53
71 0182cf6ade579b34 111 30 1 1 7 18 2 0 0 0 0 1 13 104044953600 2 3 1
72 0283db7fca659e14 111 30 1 1 7 18 2 0 0 0 0 1 13 104044953600 2 3 ?
73 0243d6aec7b95f18 111 30 1 1 78 18 2 0 0 0 0 1 13 104044953600 2 3 68
74 ? 11 30 1 1 7 18 2 0 0 0 0 1 7 104044953600 ? 3 ?
75 7 11 30 1 1 7 18 2 0 0 0 0 1 7 104044953600 ? 3 ?
76 ? 11 30 1 1 7 18 2 0 0 0 0 1 7 104044953600 7 3 ?
77 0bf36482759cdela 11 30 1 1 8 15 3 0 0 0 0 1 13 104044953600 2 3
78 7 11 30 1 1 8 15 3 0 0 0 0 1 ? 104044953600 ? 3 ?
79 08e42ac1d715b396 9% 34 1 1 72 18 4 0 0 0 0 1 11 104044953600 2 3 80
80 04693fd17bb52eac8 9% 34 1 1 72 18 4 0 0 0 0 1 11 104044953600 2 3 79
81 09e65¢£74d82ba3l 9% 34 1 1 72 18 4 0 0 0 0 1 11 104044953600 2 2 82
82 0c6bd9f2e8a51734 95 34 1 1 72 18 4 0 0 0 0 1 11 104044953600 2 3 81
83 08cb52aeld4f6b397 95 34 1 1 72 18 4 0 0 0 0 1 12 104044953600 2 3 83
84 04aeB8c219fbd5376 63 42 1 1 7 0 14 0 0 0 0 1 10 14863564800 2 3 84

60

TABLE B.3: Most efficient implementations with additional details 85-138

Representative |c/=1/4 1/2 3/4 1 p=1/8 1/4 3/8 1/2 5/8 3/4 7/8 1 cost size of class bn deg inv

85 0dbea6372£91c845 111 30 1 1 80 18 0 1 0 0 0 1 12 104044953600 2 2 85
86 0eab2c93f4d587bi 111 30 1 1 8 18 0 1 0 0 0 1 13 104044953600 2 3 86
87 0913b2c486edba7f 118 26 2 1 72 21 2 0 0 O O 1 13 104044953600 2 3 87
88 0d7c2a1B86ebfb349 118 26 2 1 72 21 2 0 0 0 O 1 13 104044953600 2 3 89
89 0c6749bel1532f8da 118 26 2 1 72 21 2 0 0 0 0 1 13 104044953600 2 3 88
90 0e2f84acb7d65319 118 26 2 1 72 21 2 0 0 O 0 1 13 104044953600 2 3 9
91 0329d7e8f4c51bab 118 26 2 1 72 21 2 0 0 0 O 1 13 104044953600 2 3 7
92 ? 118 26 2 1 72 21 2 0 0 0 0 1 7 104 044 953 600 ? 3 ?
93 0c2dbf16ae497358 110 28 2 1 6 24 2 0 0 0 0 1 11 52022476 800 2 2 9
94 095f18ed4a7b3d2c6 110 28 2 1 66 24 2 0 0 0 0 1 11 52022476 800 2 2 94
95 04e8ca639bfd5172 110 28 2 1 66 24 2 0 0 0 0 1 12 52022476 800 2 3 93
96 0bdb7f243al8ebc9 18 26 2 1 75 18 3 0 0 0 0 1 13 104044953600 2 3 96
97 0913b24cabed587f 118 26 2 1 75 18 3 0 0 0 0 1 13 104044953600 2 3 97
98 0425be968fdc731a 118 26 2 1 75 18 3 0 0 0 0 1 13 104044953600 2 3 98
99 0724ae85bfdc6319 118 26 2 1 75 18 3 0 0 0 0 1 13 52022476 800 2 3 99
100 01b2c¢5e3£7d689%a4 118 26 2 1 75 18 3 0 0 0 0 1 13 104044953600 2 3 102
101 0acbd736f£4b912e8 118 26 2 1 7% 18 3 0 0 0 0 1 13 52022476 800 2 3 101
102 09657cade4831bf2 118 26 2 1 75 18 3 0 0 0 0 1 13 104044953600 2 3 100
103 0821e7ca6fd593b4 118 26 2 1 75 18 3 0 0 0 0 1 13 104044953600 2 3 104
104 012bd4e3c7£598a6 118 26 2 1 75 18 3 0 0 0 0 1 13 104044953600 2 3 103
106 ? 118 26 2 1 75 18 3 0 0 0 0 1 7 104044953600 7 3 ?
106 0a387f496edcb125 110 280 2 1 69 21 3 0 0 0 0 1 11 1040449563600 2 3 109
107 042bbd968ecf731a 110 28 2 1 69 21 3 0 0 0 0 1 11 104044953600 2 3 115
108 03298bd5cfed476al 110 28 2 1 69 21 3 0 O 0 0 1 11 104044953600 2 3 111
109 086eb5c7d4£2391ba 110 28 2 1 69 21 3 0 0 O O 1 11 104044953600 2 3 106
110 06853d942cab7ife 110 28 2 1 69 21 3 0 0O 0O 0 1 11 104044953600 2 3 112
111 0bd74£985ec621a3 110 28 2 1 69 220 3 0 O 0 0 1 12 104044953600 2 3 108
112 06e9156dbf37a42c8 110 28 2 1 69 21 3 0 O O O 1 12 104044953600 2 3 110
113 0ec9731dfbb52a486 110 28 2 1 69 21 3 0 0 0 O 1 12 104044953600 2 3 114
114 08alf356e24db79c 110 28 2 1 69 21 3 0 O O O 1 12 104044953600 2 3 113
115 0942663718fdabec 110 28 2 1 69 21 3 0 O 0 0 1 12 104044953600 2 3 107
116 0c8962e5fb7a41d3 118 26 2 1 7% 15 4 0 0 0 0 1 13 104044953600 2 3 116
117 ? 118 26 2 1 7% 15 4 0 0 0 0 1 7 52022476800 7 3 7
118 ? 118 26 2 1 7% 15 4 0 0 0 O 1 7 52022476 800 ? 3 7
119 048e26c31£9567bda 110 28 2 1 72 18 4 0 0 0 0 1 12 104044953600 2 3 120
120 04cae86bf1d35972 110 28 2 1 72 18 4 0 0 0 0 1 12 104044953600 2 3 119
121 03aldf79ec658b24 110 28 2 1 72 18 4 0 0 0 0 1 12 104044953600 2 3 124
122 0281ce6bdfb549a37 110 28 2 1 72 18 4 0 0 0 0 1 12 104044953600 2 3 129
123 0281ce7bdf459a36 120 28 2 1 72 18 4 0 0 0 0 1 12 104044953600 2 3 128
124 0d14376cfae2958b 110 28 2 1 72 18 4 0 0 0 0 1 12 104044953600 2 3 121
125 0b12756acfe4938d 110 28 2 1 72 18 4 0 0 0 0 1 12 104044953600 2 3 127
126 08f5bled2ac3d697 110 28 2 1 72 18 4 0 0 0O 0 1 12 34681651200 2 3 126
127 02418ae693fcd7bb 110 28 2 1 72 18 4 0 0 0 0 1 12 104044953600 2 3 125
128 0bd74f91c65ea823 110 28 2 1 72 18 4 0 0 0 0 1 13 104044953600 2 3 123
129 08e52ac1£4d693b7 110 28 2 1 72 18 4 0 0 0 0 1 13 104044953600 2 3 122
130 08a2d5e3f6c791b4 118 26 2 1 74 21 0 1 0 0 0 1 13 104044953600 2 3 130
131 0d91ea6572f3c84b 118 26 2 1 77 18 1 1 0 0 0 1 12 104044953600 2 3 131
132 0481e37dfabbb9c2 110 28 2 1 71 21 1 1 0 0 0 1 12 104044953600 2 3 133
133 0c86d352f74e19ba 110 28 2 1 71 21 1 1 0 ¢ 0 1 12 104044953600 2 3 132
134 0829b71eab4df35c 110 28 2 1 74 18 2 1 0 0 0 1 11 26011238400 2 2 135
135 0c635172e8abf9d4 110 28 2 1 74 18 2 1 0 0 0 1 11 26011238400 2 3 134
136 04e935fb71d86ac2 110 28 2 1 74 18 2 1 0 0 0 1 12 104044953600 2 3 137
137 0ac9£75d1b32e684 110 28 2 1 74 18 2 1 0 0 0 1 12 104044953600 2 3 136
138 0591e26d7afbc843 110 28 2 1 74 18 2 1 0 0 0 1 12 104044953600 2 3 138

61

B. EXTENDED TABLE OF ALL CLASSES

TABLE B.4: Most efficient implementations with additional details 139-192

Representative ¢/ =1/4 1/2 3/4 1 p=1/8 1/4 3/8 1/2'5/8 3/4 7/8 1 cost size of class bn deg inv
139 08£43bd6912c7eba 10 28 2 1 74 18 2 1 0 0 0 1 12 26011238400 2 2 139
140 0821£396eadbb7dc 110 28 2 1 74 18 2 1 0 0 0 1 12 104044953600 2 3 141
141 0£415a6b97d2e8c3 110 28 2 1 74 18 2 1 0 0 0 1 12 104044953600 2 3 140
142 0283df7ace659b14 9 32 2 1 62 24 2 1 0 0 0 1 9 52022476800 2 3 143
143 0a6d5f7c4e2391b8 94 32 2 1 62 24 2 1 0 0 0 1 9 52022476800 2 2 142
144 04acBe239fbd5176 94 32 2 1 62 24 2 1 0 0 0 1 10 52022476800 2 3 145
145 0821f6dacbe4b397 94 32 2 1 62 24 2 1 0 0 0 1 10 52022476800 2 3 144
146 0814dbea7f62b3c9 94 32 2 1 62 24 2 1 0 0 0 1 10 52022476800 2 3 147
147 0425b796aec1£3d8 94 32 2 1 62 24 2 1 0 0 0 1 10 52022476800 2 2 146
148 04617b5a8ce3d9f2 94 32 2 1 62 24 2 1 0 0 0 1 10 52022476800 2 2 150
149 0c63d1fae82597b4 94 32 2 1 62 24 2 1 0 0 0 1 10 52022476800 2 2 149
150 0e6bd9f2c8a51734 94 32 2 1 62 24 2 1 0 0 0 1 10 52022476800 2 3 148
151 04af8d21be9c7366 94 32 2 1 62 24 2 1 0 0 0 1 1 52022476800 2 3 153
152 0c81bfb53d9762ead 9 32 2 1 62 24 2 1 0 0 0 1 1 52022476800 2 3 152
153 0a2395b8d7f6c4el 94 32 2 1 62 24 2 1 0 0 0 1 11 52022476800 2 3 151
154 0824f6ae5d73%1ch 94 32 2 1 62 24 2 1 0 0 0 1 11 52022476800 2 3 154
155 04639fd2e8cb517a 94 32 2 1 64 24 0 2 0 0 0 1 10 52022476800 2 3 155
156 0c69a24ef758b31d 17 24 3 1 66 21 4 0 0 0 0 1 12 104044953600 2 3 156
157 08296cbadfdeb317 17 24 3 1 66 21 4 0 0 0 0 1 13 34681651200 2 3 157
158 0bd57£26183ac4e9 117 24 3 1 69 18 5 0 0 0 0 1 13 104044953600 2 3 158
159 08ebc7a4b391£6d2 117 24 3 1 69 18 5 0 0 0 0 1 13 104044953600 2 3 160
160 08a9f65db217e3c4 117 24 3 1 69 18 5 0 0 0 0 1 13 104044953600 2 3 159
161 0a8b46d2ce7£1395 117 24 3 1 69 18 5 0 0 0 0 1 13 104044953600 2 3 161
162 08235cfae64719bd 117 24 3 1 69 18 5 0 0 0 0 1 13 104044953600 2 3 162
163 0ac46e251b39£7d8 109 26 3 1 63 21 5 0 0 0 0 1 11 104044953600 2 3 166
164 08e4c6a591b3d7£2 109 26 3 1 63 21 5 0 0 0 0 1 11 104044953600 2 3 165
165 0ceb3b91d7f284a6 109 26 3 1 63 21 5 0 0 0 0 1 11 104044953600 2 3 164
166 046abec9f8d27351 109 26 3 1 63 21 5 0 0 0 0O 1 11 104044953600 2 3 163
167 0823b79ad5f64cel 109 26 3 1 63 22 5 0 0 0 0 1 11 104044953600 2 3 169
168 0a4e86c13bdbf792 109 26 3 1 63 21 5 0 0 0 0 1 12 104044953600 2 3 168
169 06e842¢397f5blda 109 26 3 1 63 21 5 0 0 0 0 1 12 104044953600 2 3 167
170 05bf8d349cae6217 109 26 3 1 63 21 5 0 0 0 0 1 12 104044953600 2 3 170
171 0291e8a3f6d5b7c4 117 24 3 1 72 15 6 0 0 0 0 1 12 104044953600 2 3 171
172 068cea2db7951£34 109 26 3 1 66 18 6 0 0 0 0 1 12 104044953600 2 3 172
173 08235cfae74619bd 109 26 3 1 66 18 6 0 0 0 0 1 12 104044953600 2 3 173
174 0219d7e3c6£48ab5 100 26 3 1 66 18 6 0 0 ¢ 0 1 12 104044953600 2 3 174
175 03alec69df748b25 109 26 3 1 66 18 6 0 0 0 0 1 12 104044953600 2 3 177
176 0283cabedb749f15 109 26 3 1 66 18 6 0 0 0 0 1 12 104044953600 2 3 176
177 032476abcfed8bdi 109 26 3 1 66 18 6 0 0 0 0 1 12 104044953600 2 3 175
178 0289f75a6c4d3ble 109 26 3 1 69 156 7 0 0 ©0 0 1 12 104044953600 2 3 178
179 0ea3c84671£2d95b 117 24 3 1 65 24 1 1 0 0 0 1 12 104044953600 2 3 179
180 072634bc58f9elad 117 24 3 1 66 24 1 1 0 0 0 1 13 104044953600 2 3 181
181 06b3e%c1fadd2785 17 24 3 1 66 24 1 1 0 0 0 1 13 104044953600 2 3 180
182 09324debf75618ac 17 24 3 1 68 21 2 1 0 0 0 1 13 104044953600 2 3 182
183 0e42a6c3fbd97158 109 26 3 1 62 24 2 1 0 0 0 1 11 104044953600 2 3 184
184 047bafe9d8c36251 109 26 3 1 62 24 2 1 0 0 0 1 11 104044953600 2 3 183
185 041dbeab267fc983 109 26 3 1 62 24 2 1 0 0 0 1 1 52022476800 2 3 185
186 0481eb7d62f3c95a 109 26 3 1 62 24 2 1 0 0 0 1 1 52022476800 2 3 186
187 0ceb53b91£7d4a286 109 26 3 1 62 24 2 1 0 0 0 1 12 52022476800 2 3 187
188 0a3b29c5fe4d6781 109 26 3 1 62 24 2 1 0 0 0 1 12 52022476800 2 2 188
189 0ea342c6fb78d951 117 24 3 1 80 9 6 1 0 0 0 1 12 104044953600 2 3 189
190 0285ca4e9£36db71 109 26 3 1 74 12 6 1 0 0 0 1 11 104044953600 2 3 190
191 06c18a4edf329b75 109 26 3 1 74 12 6 1 0 0 0 1 11 104044953600 2 3 191
192 08e64c29d7f51b3a 93 30 3 1 66 15 7 1 0 0 0 1 10 104044953600 2 3 193

62

TABLE B.5: Most efficient implementations with additional details 193-246

Representative |¢]=1/4 1/2 3/4 1 p=1/8 1/4 3/8 1/2 5/8 3/4 7/8 1 cost size of class bn deg inv
193 08e6c4ald7£593b2 93 3¢ 3 1 65 15 7 1 0 0 0 1 10 104044953600 2 3 192
194 08ale2c6f7d4b395 116 22 4 1 60 21 6 0 0 0 0 1 12 104044953600 2 3 194
195 0Oe6c84al7fd5b392 116 22 4 1 60 21 6 0 0 0 0 1 13 26011238400 2 3 195
196 0d786e5c2a1fb349 16 22 4 1 60 20 6 0 0 0O 0 1 13 26011238400 2 3 196
197 0938e64bf75ca21d 16 22 4 1 63 18 7 0 0 0 0 1 12 104044953600 2 3 197
198 08ale6c3f7d4b295 116 22 4 1 66 15 8 0 0 0 0 1 12 104044953600 2 3 198
199 08ale6d3f7c5b294 116 22 4 1 66 15 8 0 0 0 0 1 12 104044953600 2 3 199
200 0c6348aef71259bd 116 22 4 1 59 24 3 1 0 0 0 1 12 104044953600 2 3 200
201 08e64c2bd7£5193a 108 24 4 1 5 24 4 1 0 0 0 1 11 104044953600 2 3 201
202 08ce4623£5d791ba 108 24 4 1 56 24 4 1 0 0 0 1 1 52022476800 2 3 203
203 024ce6a97£5d1b38 108 24 4 1 56 24 4 1 0 0 0 1 11 52022476800 2 3 202
204 04a8ec23dbf95176 108 24 4 1 56 24 4 1 0 0 0 1 11 52022476800 2 3 204
205 0Qac46e2d1b397158 108 24 4 1 62 18 6 1 0 0 0 1 11 104044953600 2 3 206
206 08a17b96f3d2c6ed 108 24 4 1 62 18 6 1 0 0 0 1 11 104044953600 2 3 206
207 075%aec8fbd26341 108 24 4 1 62 18 6 1 0 0 0 1 11 104044953600 2 3 208
208 08297d5adcefb316 108 24 4 1 62 18 6 1 0 0 0 1 11 104044953600 2 3 207
209 02a846c397blfbde 108 24 4 1 62 18 6 1 0 0 0 1 12 104044953600 2 3 209
210 06ac24e397bbd1£8 108 24 4 1 62 18 6 1 0 0 0 1 12 104044953600 2 3 211
211 0ac62e¢83b795f1d4 108 24 4 1 62 18 6 1 0 0 0 1 12 104044953600 2 3 210
212 0d98eat5fb7341c2 116 22 4 1 73 12 5 2 0 0 0 1 12 104044953600 2 3 212
213 0283de7bcf669a14 108 24 4 1 67 15 5 2 0 0 0 1 11 104044953600 2 3 214
214 0392ce7bdf648a15 108 24 4 1 67 15 5 2 0 0 0 1 11 104044953600 2 3 213
215 0281df7ace459b36 92 28 4 1 48 3 0 3 0 0 O 1 9 26011238400 2 3 216
216 086£5d7e4c29b3ia 92 28 4 1 48 30 0 3 0 0 0 1 9 26011238400 2 2 215
217 0283de7bcf459a16 115 20 5 1 56 21 6 1 0 0 0 1 12 104044953600 2 3 217
218 0829f75ae64db3lc 107 22 5 1 52 24 4 2 0 0 0 1 9 104044953600 2 3 218
219 0823b79%ad5f6cdel 107 22 5 1 52 24 4 2 0 0 0 1 10 104044953600 2 3 219
220 08a2d5£3e7c691b4 115 20 5 1 64 15 6 2 0 0 0 1 12 104044953600 2 3 220
221 08a2c4e597b1d3£6 107 22 5 1 58 18 6 2 0 0 0 1 11 104044953600 2 3 221
222 08e6c4al97f5d3b2 107 22 5 1 58 18 6 2 0 0 0 1 11 104044953600 2 3 222
223 08aB4ce75df1b293 114 18 6 1 63 6 15 0 0 0 0 1 12 17340825600 2 3 223
224 0462e8c3715bf9da 114 18 6 1 63 6 15 0 0 0 0 1 13 5780275200 2 3 224
225 08465dbce7a291£3 114 18 6 1 54 21 4 3 0 0 0 1 12 104044953600 2 3 226
226 08al1dbf3c4e6b297 114 18 6 1 54 21 4 3 0 0 0 1 12 34681651200 2 3 226
227 0Oabd4ef9823657c1 106 20 6 1 54 18 6 3 0 0 0 1 10 26011238400 2 2 227
228 048c62e315f97bda 114 18 6 1 66 6 9 3 ¢ 0 0 1 13 34681651200 2 3 228
229 0823d7fadce591b6 106 20 6 1 63 9 9 3 0 0 0 1 11 104044953600 2 3 229
230 0c69a24ef718b35d 113 16 7 1 62 9 8 4 0 0 0 1 11 104044953600 2 3 230
231 0938e65bf74ca2ld 110 10 10 1 65 0 5 10 0 0 0 1 11 20808990720 2 3 231
232 092e7456cdfb83al 94 32 2 1 66 23 1 0 1 0 0 1 11 52022476800 2 3 232
233 03fcb6ed47928alb 94 32 2 1 66 23 1 0 1 0 0 1 11 52022476800 2 2 233
234 097e4d6£5c38a21b 109 26 3 1 6 23 1 0 1 0 0 1 12 52022476800 2 2 234
235 06acBe239fbd5174 92 28 4 1 60 17 7 0 1 0 0 1 10 104044953600 2 3 235
236 06acB8e219fbd7354 92 28 4 1 60 17 7 0 1 0 0 1 10 104044953600 2 3 236
237 08e64c29£7d51b3a 107 22 5 1 48 29 3 0 1 0 0 1 1 52022476800 2 3 237
238 0921b3d5f7a86edc 107 22 5 1 48 29 3 0 1 0 0 1 12 17340825600 2 3 238
239 08e64c29d5£71b3a 107 22 5 1 54 23 5 0 1 0 0 1 11 34681651200 2 3 239
240 Qac46e29f7d53bi8 107 22 5 1 60 17 7 0 1 0 0 1 11 104044953600 2 3 240
241 08a719b35df6e2c4 05 18 7 1 58 11 9 2 1 0 0 1 11 104044953600 2 3 241
242 0a23f7d86ec591b4 105 18 7 1 5. 11 9 2 1 0 0 1 11 52022476800 2 3 242
243 086d5f7ec4291b3a 62 40 2 1 48 33 0 0 0 1 0 1 9 17340825600 2 2 243
244 08e64c2bf7d5193a 90 24 6 1 42 21 6 0 0 1 0 1 10 34681651200 2 3 244
245 084a6e1d5c397£2b 112 28 0 2 57 22 7 0 O O O 1 12 14863564800 2 3 245
246 08ab193246¢cf7dbe 9% 32 0 2 51212 9 0 0 0 0 1 10 52022476800 2 2 246

63

B. EXTENDED TABLE OF ALL CLASSES

TABLE B.6: Most efficient implementations with additional details 247-302

Representative |c|=1/4 1/2 3/4 1 p=1/8 1/4 3/8 1/2 5/8 3/4 7/8 1 cost sizeofclass bn deg inv
247 0ba981234febdc57 112 28 0 2 50 30 2 1 0 0 0 1 11 26011238400 2 2 47
248 0c2f1d7a48693b5e 96 32 0 2 4 30 4 1 0 0 O 1 9 13005619200 2 2 251
249 012b89f7cde654a3 9% 32 0 2 4 30 4 1 0 0 0 1 9 6502809600 2 3 249
250 082b195d4f6e7c3a 9% 32 0 2 4 30 4 1 0 0 0 1t 10 13005619200 2 3 250
251 024513768ecbf9da 9% 32 0 2 4 30 4 1 0 O 0 1 10 13005619200 2 2 248
252 0c7b3eba2f4d6918 9% 32 0 2 4 30 4 1 0 0 0 1 10 13005619200 2 3 252
253 086f5d7e4c293bla 64 40 0 2 32 36 0 4 0 0 0 1 7 6502809600 2 2 256
254 086f5d7e4c2391ba 64 40 0 2 32 3% 0 4 0 0 0 1 7 3251404800 2 2 255
255 082b197c4e6d5f3a 64 40 0 2 32 3 0 4 0 0 0 1 8 3251404800 2 3 254
256 046173628cebd9fa 64 40 0 2 32 38 0 4 0 0 0 1 8 6502809600 2 2 253
257 086f5d7ec4alb392 64 40 0 2 32 6 0 4 0 0 0 1 8 6502809600 2 2257
258 08a319f6c4e7d5b2 0 5 0 2 64 0 0 14 ¢ 0 O 1 7 232243200 2 2 258
259 09£75d26183acdeb 110 24 2 2 45 21 11 0 0 O O 1 11 52022476800 2 3 259
260 08a357dfb192cde6 110 24 2 2 50 18 10 1 0 O 0 1 11 26011238400 2 3 260
261 08a71df395b2cde6 94 28 2 2 40 24 8 2 0 0 0 1 9 26011238400 2 3 263
262 0459afebdBc16273 94 28 2 2 40 24 8 2 0 0 0 1 9 52022476800 2 3 262
263 0812b3a95d46f7ce 94 28 2 2 40 24 8 2 0 0 0 1 9 26011238400 2 2 261
264 04369ca78def512b 110 24 2 2 48 24 4 3 0 0 0 1 11 34681651200 2 3 264
265 032547618bacfedd 108 20 4 2 4 12 16 1 0 0 0 1 10 13005619200 2 2 265
266 08297f5a6e4d3bic 92 24 4 2 28 30 4 5 0 0 0 1 7 13005619200 2 3 267
267 082b193adcebf7d6 92 24 4 2 28 30 4 5 0 0 0 1 8 13005619200 2 2 266
268 082b3f1abd7e4c69 92 24 4 2 28 30 4 5 0 0 0 1 8 13005619200 2 3 268
269 0461dbf28ce9637a 56 28 8 1 0 6 0 0 0 0 0 2 9 309657600 2 3 269
270 092e1436¢dfb8ba7 96 32 0 2 48 29 3 0 1 0 0 1 11 17340825600 2 3 270
271 082bla6dbf7e4c39 9% 32 0 2 48 29 3 0 1t 0 0 1 1 8670412800 2 3 271
272 046£953b1ld7ec82a 110 24 2 2 36 3% 3 0 1 0 0 1 11 8670412800 2 3 272
273 0a28c6e53b91£7d4 92 24 4 2 40 17 11 2 1 0 0 1 9 52022476800 2 3 273
274 082a4ce51b39d7£6 92 24 4 2 40 17 11 2 1 0 0 1 9 26011238400 2 3 274
275 0a28c4e53b91£7d6 106 16 6 2 32 23 7 4 1 0 0 1 10 26011238400 2 3 275
276 082ac4e519b3d716 104 12 8 2 42 1 5 9 1 0 0 1 10 17340825600 2 3 276
277 082b7cbad96e3f1d 108 20 4 2 58 16 0 5 2 0 0 1 11 3251404800 2 3 277
278 08a75db391f6cde2 92 24 4 2 46 2 0 5 2 0 0 1 9 6502809600 2 3 278
279 086e4c295d7f1b3a 90 20 6 2 42 9 15 0 3 0 0 1 9 17340825600 2 3 279
280 082a4ce7193bfbdé 104 12 8 2 24 32 0 3 4 0 0 1 10 2167603200 2 3 280
281 082a4ceb193bd7£6 104 12 8 2 48 8 8 3 4 0 0 1 10 4335206400 2 3 281
282 082ac4e319b7d6f6 100 4 12 2 54 0 0 9 6 0 0 1 10 3251404800 2 3 282
283 086e4c296d7f3bla 62 36 2 2 36 21 12 0 0 1 0 1 8 17340825600 2 3 283
284 04ae8c239dbf5176 62 36 2 2 36 21 12 0 0 1 0 1 8 13005619200 2 3 284
285 08a3bdf2c4e791b6 60 32 4 2 32 20 0 7 0 1 0 1 7 6502809600 2 3 285
286 08e64c2bdb£7193a 90 20 6 2 24 27 8 3 0 1 0 1 8 13005619200 2 3 286
287 0823d5fa4ce791b6 88 16 8 2 38 13 8 4 2 1 0 1 8 13005619200 2 3 287
288 046153728ce9dbfa 0 56 0 2 056 0 0 0 0 0 2 7 309657600 2 2 288
289 046b59728ce3difa 0 56 0 2 0866 0 0 0 0 0 2 7 270950400 2 2 289
290 0463d9f28ceb517a 56 24 8 2 04 0 6 0 0 0 2 7 541900800 2 3 290
291 0127456389aedcbf 96 24 0 4 24 6 24 3 0 0 O 1 8 1083801600 2 2 291
292 081b2a394c5e7f6d 64 32 0 4 03 012 0 0 0 1 6 1625702400 2 2 292
293 0c2f1d7b483a596e 96 24 0 4 12 38 0 3 4 0 0 1 9 541900800 2 3 293
294 082ac4e719b3d6£6 8 8 8 4 12 20 0 9 4 2 0 1 7 1625702400 2 3 294
295 086e4c2b5d7£193a 60 24 4 4 6 9 16 5 0 3 0 1 6 3251404800 2 3 295
296 082bbd7£193e4c6a 84 0 12 4 3 3 0 0 12 3 0 t 7 361267200 2 3 296
207 082b197e4c6i5d3a 0 48 0 4 032 012 0 0 0 2 5 203212800 2 2 297
208 046351728cebd9fa 0 48 0 4 032 012 0 0 0 2 5 270950400 2 2 298
299 082bbd7a4c6f193e 56 16 8 4 02 0 12 0 2 0 2 5 270950400 2 3 299
300 082a4c6£193bbd7e 56 0 8 8 014 0 0 0 14 0 2 4 38707200 2 3 300
301 082b193a4c6f6d7e 0 32 0 8 0 0 0 24 0 0 0 4 3 33868800 2 2 301
302 0123456789abcdef 0 0 0 16 0 0 0 0 0 0 0 16 0 322560 2 1 302

64

Bibliography

6]

171

(8]

(9]

[10]

(1]

f12]

(13]

[14]

[15]

[16]

[17]

(18]

(19]

(20]

R. Anderson, E. Biham, and L. Knudsen. Serpent: A Proposal for the Advanced Encryption Standard. In in
First Advanced Encryption Standard (AES) Conference, 1998.

Atmel. Section 1 8051 Microcontroller Instruction Set. URL: www.atmel.com/atmel/acrobat/doc0609.pdt, 2006.
G. V. Bard. Algebraic Cryptanalysis. Springer Publishing Company, Incorporated, 2009,

R. Bayer. Symmetric binary b-trees: Data structure and maintenance algorithms. Acta Inf., 1:290-306, 1972.
E. Biham and A. Shamir. Differential Cryptanalysis of DES-like Cryptosystems. In CRYPTO ’'90: Proceedings
of the 10th Annual International Cryptology Conference on Advances in Cryptology, pages 2-21, London,

UK, 1991. Springer-Verlag.

A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B. Robshaw, Y. Seurin, and
C. Vikkelsoe. PRESENT: An Ultra-Lightweight Block Cipher. In CHES, pages 450—466, 2007.

Canonical. Ubuntu — Details of libavl-dev in karmic. URL: http://packages.ubuntu.com/karmic/libavl-dev,
last visited 2010-04-17.

A. Canteaut, C. Lauradoux, and A. Seznec. Understanding cache attacks. URL: hal.inria.fr/docs/00/07/13/
87/PDF/RR-5881.pdf, 2006.

J. Daemen, M. Peeters, G. Van Aassche, and V. Rijmen. Nessie proposal: NOEKEON. URL: gro.noekeon.
org/Noekeon-spec.pdf, 2000.

J. Daemen and V. Rijmen. The Design of Rijndael. Springer-Verlag New York, Inc., Secaucus, NJ, USA,
2002.

J. F. Dillon. APN polynomials: an update. presented at International Conference on Finite fields and
applications - Fq9, 2009.

Y. Hatano and D. Watanabe. Higher Order Differential Attack on Step-Reduced Variants of Luffa. URL:
http://www.sdl.hitachi.co.jp/crypto/luffa/Higher0OrderDifferentialAttackOnLuffa_vi_20090915.pdf, 2010.

H. M. Heys. A tutorial on linear and differential cryptanalysis. Cryptologia, 26(3):189-221, 2002.

G. D. Knott. A balanced tree storage and retrieval algorithm. In SIGIR ’71: Proceedings of the 1971
international ACM SIGIR conference on Information storage and retrieval, pages 175-196, New York, NY,
USA, 1971. ACM.

G. Leander and A. Poschmann. On the Classification of 4 Bit S-Boxes. In WAIFI ’07: Proceedings of
the 1st international workshop on Arithmetic of Finite Fields, pages 159-176, Berlin, Heidelberg, 2007.
Springer-Verlag.

M. Matsui and A. Yamagishi. A New Method for Known Plaintext Attack of FEAL Cipher. In EUROCRYPT,
pages 81-91, 1992,

C. De Canniére. Analysis and design of symmetric encryption algorithms. PhD thesis, K.U. Leuven, 2007.

C. De Canniére, A. Biryukov, and B. Preneel. An Introduction to Block Cipher Cryptanalysis. Proceedings
of the IEEE, 94(2):346-356, 2006.

C. De Canniére, O. Dunkelman, and M. KneZevié. KATAN and KTANTAN — A Family of Small and Effi-
cient Hardware-Oriented Block Ciphers. In CHES ’09: Proceedings of the 11th International Workshop on
Cryptographic Hardware and Embedded Systems, pages 272-288, Berlin, Heidelberg, 2009. Springer-Verlag.

C. De Cannitre, H. Sato, and D. Watanabe. Hash Function Luffa: Specification. Submission to NIST (Round
2), 2009.

65

BIBLIOGRAPHY

[21]

(22]

(23]

[24]
[25]

(26]

(27]

(28]

(29]

66

D. De Schreye. Artificiele Intelligentie. lecture notes, URL: http://www.cs.kuleuven.ac.be/~dannyd/AI_Leuven,
2010.

H. C. van Tilborg. Encyclopedia of Cryptography and Security. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 2005.

Vlaams Supercomputer Centrum. VIC3 User Manual. URL: https://vscentrum.be/vsc-help-center/
reference-manuals/vic3-user-manual/referencemanual-all-pages, last visited 2010-04-17.

D. A. Osvik. Speeding up Serpent. In AES Candidate Conference, pages 317-329, 2000.
B. Pfaff. GNU libavl. URL: http://savannah.gnu.org/projects/avl, last visited 2010-05-14.

B. Pfaff. Performance analysis of BSTs in system software. SIGMETRICS Perform. Eval. Rev., 32(1):410-
411, 2004.

B. Schneier and J. Kelsey. Unbalanced feistel networks and block-cipher design. In Fast Software Encryption,
8rd International Workshop Proceedings, pages 121-144. Springer-Verlag, 1996.

C. Shannon. Communication Theory of Secrecy Systems. Bell System Technical Journal, Vol 28, pp. 656-
715, Oktober 1949.

D. Watanabe. How to generate the Sbox of Luffa. presented at ESC2010@Remich, January 2010.

