Simpira v2: A Family of Efficient Permutations
Using the AES Round Function

Shay Gueron®? and Nicky Mouha®*?

IDepartment of Mathematics, University of Haifa, Israel
2Intel Corporation, Israel Development Center, Haifa, Israel
3ESAT/COSIC, KU Leuven and iMinds, Belgium
4Project—team SECRET, Inria, France
5NIST, Gaithersburg, MD, USA

ASIACRYPT 2016
December 5, 2016

nicky@mouha.be

1/19



I'm Joint Author Of:

APE (PRIMATEs) (FSE 2014)
e Lightweight permutation-based authenticated encryption

e On-line misuse resistance, Releasing Unverified Plaintext
(RUP) security

e PRIMATEs: Second-round CAESAR competition

Chaskey (SAC 2014)
e MAC algorithm for microcontrollers
e # 1 according to FELICS figure of merit
e ISO/IEC 29192-6 (draft)

Simpira (ASIACRYPT 2016)
e Family of permutations based on AES round function
e This presentation...

2/19



Background

AES Instructions
e Introduced by Intel (later AMD, recently ARM)
e On Intel Skylake: AESENC (1 round of AES)

e Latency: 4 cycles
e Throughput: 1 cycle

3/19



Background

AES Instructions
e Introduced by Intel (later AMD, recently ARM)
e On Intel Skylake: AESENC (1 round of AES)

e Latency: 4 cycles
e Throughput: 1 cycle

Focus: Throughput, Not Latency
e Requires parallelizable mode or independent data
e Problem inherent to AESENC!

3/19



Background

AES Instructions
e Introduced by Intel (later AMD, recently ARM)
e On Intel Skylake: AESENC (1 round of AES)

e Latency: 4 cycles
e Throughput: 1 cycle

Focus: Throughput, Not Latency
e Requires parallelizable mode or independent data
e Problem inherent to AESENC!

Example to Motivate AESENC: Google Chrome
e Recent 64-bit processors: AES-128-GCM
e If no AES instructions: ChaCha20-Poly1305

3/19



Limitations of AES

Key Schedule: Round Keys
e Calculate on-the-fly or store securely

e Tweak: not supported

4/19



Limitations of AES

Key Schedule: Round Keys
e Calculate on-the-fly or store securely

e Tweak: not supported

Block Size: Always 128 Bits
e Most modes of operation: insecure after ~ 264 blocks

e No secure hashing

4/19



Limitations of AES

Key Schedule: Round Keys
e Calculate on-the-fly or store securely

e Tweak: not supported

Block Size: Always 128 Bits
e Most modes of operation: insecure after ~ 264 blocks

e No secure hashing

Alternatives?
¢ Rijndael with 256-bit block size? SHA-27 ...?

e Faster solution: Simpira

4/19



Design of Simpira

Family of Permutations
o 128 x b bits, b € Nt

5/19



xo €1
128

Design of Simpira

Family of Permutations F
o 128 x b bits, b € Nt

Building Block
e b > 2: (generalized) Feistel structure

5/19



Design of Simpira

Family of Permutations
o 128 x b bits, b € Nt

Building Block

e b > 2: (generalized) Feistel structure
e Feistel F-function: two rounds of AES

5/19



Design of Simpira

Family of Permutations
o 128 x b bits, b € Nt

Building Block
e b > 2: (generalized) Feistel structure
e Feistel F-function: two rounds of AES
e AESENC: “free” XOR: add constant, combine branches

5/19



Design of Simpira

Family of Permutations
o 128 x b bits, b € Nt

Building Block
e b > 2: (generalized) Feistel structure
e Feistel F-function: two rounds of AES
e AESENC: “free” XOR: add constant, combine branches

Design Goal

2128

e Secure up to queries, very easy analysis

e Throughput: # cycles ~ # AESENC instructions

5/19



Design Requirements

Number of Rounds
e > (# rounds: 25 active S-boxes) x3
e > (# rounds: full bit diffusion) x3

o Note: same security for 7 and 7!

6/19



Design Requirements

Number of Rounds
e > (# rounds: 25 active S-boxes) x3
e > (# rounds: full bit diffusion) x3

o Note: same security for 7 and 7!

Efficiency

e Smallest number of F-functions

6/19



Design Requirements

Number of Rounds
e > (# rounds: 25 active S-boxes) x3
e > (# rounds: full bit diffusion) x3

o Note: same security for 7 and 7!

Efficiency

e Smallest number of F-functions

Extra

e Multiple options: choose simplest design!

6/19



Simpira: b=1

Zo
}128

AES Permutation
e Rounds: 6
o #=AESENC:12

7/19



Simpira: b =2

Feistel
e Rounds: 15
o # AESENC: 30

8/19



Simpira: b=3

Type-1 GFS (Zheng et al.)
e Rounds: 21
o # AESENC: 42

9/19



Simpira: b > 4 (except b =6 and b = 8) vl

Yanagihara-lwata: Type 1.x (b,2) GFS
e Feistel rounds: 6b —9
e # AESENC: 24b — 36

10 /19



Simpira: b =106

Suzaki-Minematsu Improved Type-2 GFS
e Feistel rounds: 15
o # AESENC: 90

11/19



Simpira: b =28

Suzaki-Minematsu Improved GFS

e Feistel rounds: 18
o # AESENC: 144

12/19



Attack on Simpira vl
Dobraunig et al. (SAC 2016)

e Collision on Simpira-based hash function (b = 4)
o Full-round attack, complexity 283 (<2!28)

13/19



Attack on Simpira vl

Dobraunig et al. (SAC 2016)
e Collision on Simpira-based hash function (b = 4)
e Full-round attack, complexity 233 (<2128)

Rgnjom (ePrint 2016/248)
e Invariant subspace attack (b = 4)

e Independent of # rounds, complexity: 2 queries (!)

13/19



Attack on Simpira vl

Dobraunig et al. (SAC 2016)
e Collision on Simpira-based hash function (b = 4)
e Full-round attack, complexity 233 (<2128)

Rgnjom (ePrint 2016/248)
e Invariant subspace attack (b = 4)

e Independent of # rounds, complexity: 2 queries (!)

Underlying Problem: Yanagihara-lwata Type 1.x GFS

e Careful with independences! Cryptographic permutation
= Markov cipher with independent subkeys

e Invariant subspace attacks: often overlooked

e Fix: strengthen round constants, replace Type 1.x GFS

13/19



Simpira: b=14 v2

Type-2 GFS (Zheng et al.)
o Feistel rounds: 15
e # AESENC: 60

14 /19



Simpira: b > 5 (except b =6 and b = 8) v2

%

Dedicated Construction
e |terate this three times
e # AESENC: 24b — 36

15/19



Simpira: b > 5 (except b =6 and b = 8) v2

Dedicated Construction
e |terate this three times
e # AESENC: 24b — 36

15/19



Simpira: b > 5 (except b =6 and b = 8) v2

Dedicated Construction
e |terate this three times
e # AESENC: 24b — 36

15/19



Simpira: b > 5 (except b =6 and b = 8) v2

{4
Sl dfFl
{6
-[Fé
I
Se{Flet Se{Fley
Ge{r}

Dedicated Construction
e |terate this three times
e # AESENC: 24b — 36

15/19



Simpira: b > 5 (except b =6 and b = 8) v2

{6

Dedicated Construction
e |terate this three times
e # AESENC: 24b — 36

15/19



Benchmarks (7 and 771)

Speed
Theory: up to 512 bits: < 1 ¢/B, large b: 1.5 ¢/B
Non-interleaved inputs: up to 1024 bits: overhead < 3%

cycles/byte

Interleaved inputs: overhead < 3%, even for 4 kB inputs

25

0.5

10

b (logarithmic scale)

100

== theoretical optimum
=& non-interleaved
=>é= interleaved

1000

16 /19



Some Applications

Permutation-based Hashing

e Efficient processing of long and short messages

17 /19



Some Applications

Permutation-based Hashing

e Efficient processing of long and short messages

(Tweakable) Even-Mansour Block Cipher
o B =Simpira,(Pe K -T)e K- T
e Tweak: T'> 1, no tweak: T'=1

e Permutation size larger than K - T zero padding

17 /19



Some Applications

Permutation-based Hashing

e Efficient processing of long and short messages

(Tweakable) Even-Mansour Block Cipher
o B =Simpira,(Pe K -T)e K- T
e Tweak: T'> 1, no tweak: T'=1

e Permutation size larger than K - T zero padding

Robust Authenticated Encryption
e Encode-then-encipher with Even-Mansour

e Encoding: multiple of 128 bits

17 /19



Conclusion
Simpira

e Family of permutations
e 128 x b bits, b € Nt

18 /19



Conclusion

Simpira
e Family of permutations
e 128 x b bits, b € Nt

Design
e Building block: two rounds of AES

2128

e Security up to queries

e Simple design: easy security analysis

18 /19



Conclusion

Simpira
e Family of permutations
e 128 x b bits, b € Nt

Design
e Building block: two rounds of AES
e Security up to 2'?® queries

e Simple design: easy security analysis

Speed
e Theoretical optimum: one AESENC every clock cycle
e Short inputs: 1 cycle/byte, large inputs: 1.5 cycles/byte
e Benchmarks: negligible overhead (<3%)

18 /19



Questions?

19/19



Supporting Slides

20/19



Algorithm 1 AESENC Algorithm 2 I, ;(x)

procedure AESENC(state, key) 1: procedure F, ,(z)
: tmp < state 2 C < SETR_EPI32(c,b,0,0)
tmp < ShiftRows(tmp) 3: return AESENC(AESENC(z, C),0)
tmp < SubBytes(tmp) 4: end procedure
tmp < MixColumns(tmp)
state < tmp @ key
: return state

end procedure

1:
2
3
4:
5:
6
7
8:

21/19



Algorithm 3 Simpira (b =1) Algorithm 4 Simpira=! (b= 1)

1: procedure Simpira(zg) 1. procedure Simpira(zg)
2 R+ 6 2 R+ 6

3 forc=1,...,R do 3 MixColumns(xg)

4: o < Fb7c(.1‘0) 4 for c = R,...,l do
5: end for 5: Ty F,;Cl(a:o)
6: InvMixColumns(zg) 6 end for

7: return z 7 return z

8: end procedure 8: end procedure

22/19



