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Figure 2 — Calculation of Qy1[i] from Qi —St], Q:—1[i], Qi—1[i +2],
Qe-1li + 2] and Q1 [i + 2]

Ciirit || Qe [i] < Quli — St + f(Qe—1i], Qe—2[i + 2], Qe—3[i + 2], 5)
Qu—ali +2]) + Wii] + Ky[i] + Cyi -

To calculate @Quy1[¢], the bit positions of the previous state words Q;—x (0 <
k < 5) are schematically represented in Fig. 2.

In the step function for every bit (5), a single, large addition is used with a
carry input and output. The resulting carry states (Ct+1,i+17 Cii1,41) are then
the only way in which adjacent bits of the same message word pair (W ,, W}) or
internal states (@, ,, Q1) interact. If a particular carry state (Cey1i4+1,Ciyq i41)
cannot occur as the output for the calculation of this bit (Q¢41,, Q4,4 ;), nor as
the input of the calculation of the next bit (Q¢42,i+1, @ 9,11), this combination
of carries is said to be invalid.

For the calculation of every VQ41[i], all valid combinations of (C, ,;,Cy ),
(Q_1,Q;_y) for 0 < k < 5 and (Wy, W{) are represented by an edge in Fig. 3.
Imposing new conditions on VQy41[i] will lead to the elimination of some of these
edges.

The Boolean function f; and the constant bit K [i] are fixed for one bit position.
Therefore, they are not included on the edges in Fig. 3. Each of the 216 input bits
of the edges then completely determines the six output bits (Q;41[i], @y, [4]) and
(Crit1, Cfigr)-

3.2 Propagation of Conditions for Every Word V),

Initially, all input conditions are allowed for all bits. As this implies that all
outputs are allowed for every bit, this is a self-consistent state. However, as soon
as some restrictions are imposed on a bit, this may affect other bits. We refer to
this mechanism as the propagation of conditions.

To calculate the possible conditions for every word VQ¢y1 for 0 <t < T, it
is necessary to do both a forward and a backward propagation over all conditions
VQ¢+1[i] for 0 < i < 32. In Fig. 3, every possible input combination is shown as an
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Figure 3 — Explanation of the edges in the graph. When adding four
bits (and the carry input), the carry output C;; can be 0, 1, 2 or 3.
The addition of the corresponding four bits of the second message of
the collision pair results in the carry C ;.

Figure 4 — Removing edges through forward propagation

edge connecting the input carries (C, ;, Cf ;) to the output carries (Cyi41,Cy ;41)-
Note that there can be multiple edges between two nodes.

In Fig. 4, a forward propagation (for ¢ = 0,1,...,31) is done where edges
are removed if they start at an impossible input carry. In Fig. 5, a backward
propagation is performed (for i = 31,30,...,0) where edges are removed if the
output carry is invalid. If necessary, the input conditions VQ,[i — S¢], VQi—_1[i],
VQi—2[i+2], VQi—3[i+2],VQi_4[i+2] and VW,][i], as well as the output condition
VQ:+1]7] in the NL-characteristic are updated. In this way, one word can affect
the conditions of another word.

This step is repeated for every word VQ.y; for 0 < ¢t < T, until further
propagation would not remove additional edges or until at least one condition is
inconsistent. Every time a message bit W,[i] is assigned a new value, message bits
Wy [i] that are related by the message expansion, are updated as well if necessary.
The remaining valid paths for one word are then shown in Fig. 6.
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Figure 6 — Remaining valid paths for one word VQ¢41

3.3 Double Conditions

Conditions that do not involve one pair of bits, but two pairs of bits, are referred
to as “double conditions”. The use of these is new to this paper. They are similar
to Table 7, except that double conditions apply to four bits instead of two. Thus,
there are 21 possible double conditions, instead of 2%.

For the simplified HAS-V, double conditions can be used in three locations for
the calculation of one bit of V@Q;11. These are shown in Fig. 7, as the result of
the only possibilities of creating an overlap of at least two bits of Fig. 2 with a
translated version of this pattern.

The use of the first double condition is explained, the other two cases are
analogous. During the calculation of VQy 41[2], a double condition is used to rep-
resent the possibilities of the joint occurrence of VQu 41[2] and VQp _1[2]. When
VQ:+1]0] is calculated, it can be seen that the same double condition now also
applies to the joint occurrence of VQ;_2[2] and VQ;_4[2]. It is possible that this in-
formation leads to the removal of additional edges. If this is the case, the number of
iterations needed to construct an NL-characteristic is lowered, and inconsistencies
can be found sooner. In our implementation of the search for NL-characteristics,
double conditions can be implemented with minimal overhead.
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3.4 Work Factor

The work factor Ny, of an NL-characteristic indicates the expected number of step
function evaluations required to find a collision using this characteristic. When
building NL-characteristics, the collision search is optimized by lowering the work
factor. This concept was introduced in [2].

Message Freedom Fyy(t)

“Single-message modification” [21] (also known as “single-step modification” [19])
can be used during the search process, as there is still freedom left in the choice
of several expanded message words W;. Due to the constraints imposed by the
XOR-words, this is not possible for each of the 20 message word pairs (W, W/) of
the first round. Of the five message word pairs involved in the calculation of each
XOR-word, only the first four can be chosen. The last message word pair cannot
be freely chosen, but must equal the XOR, of the four others.

The message freedom Fyy(t) of a characteristic at step ¢ is the number of
ways to choose (Wy, W), without violating any (linear) condition imposed by the
message expansion, given fixed values of (W;, W) for 0 < j < t.

The description of the simplified HAS-V indicates that Fyw(t) is always 1 for
t = 10,14,15,19 and ¢t > 20. For the other values of ¢, Fy(¢) is the product of
the number of possibilities for conditions VW,[i] for 0 < ¢ < 32. This number of
possibilities equals the number of checkmarks (v') for the respective conditions in
Table 7.

Uncontrolled Probability P, ()

The uncontrolled probability P,(t) of a characteristic at step ¢ is the probabil-
ity that the output (Qu+1,Q},,) follows the characteristic, given that all input
pairs (Q—k,@;_,) for 0 < k < 5 and message word pairs (W, W/) follow this
characteristic as well:

Py(t) = P((Qt+17Q2+1) €EVQit1 | (Qii, Qi) € VQi_p for 0 < k <5,
and (W, W) € VW;) . (6)

This probability can be calculated as the number of remaining paths of Fig. 6,
divided by the number of paths for which only the input pairs (Q¢_r,Q;_,) for
0 < k < 5 and the message word pairs (W, W/) follow the characteristic, but not
necessarily the output pair (Qy+1, Q%4 1)-

Controlled Probability P.(t)

The controlled probability P.(t) of a characteristic at step ¢ is the probability that
there exists at least one pair of message words (W, W}) following the characteristic,
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such that the output (Q41,Q;, ) follows the characteristic, given that all input
pairs (Q—k, @}_;) for 0 < k <5 do as well:

Pe(t) = P(H(WnWt/) € VW;: (Qt+1>Q;+1) € VQit1 |
(Quei, Qi_) EVQu_pfor0 <k <5) . (7)

A graph is made for every bit 4 for the calculation of (Q1[i], Q},[i]) to de-
termine this probability. Each node of the graph is a carry mask, indicating which
of the 16 possible values of (C; ;, C} ;) can occur. Thus, a carry mask can have 216
possible values. Note the analogy with Table 7, where the possible combinations
of (XT[i], X[é]") are shown.

Let n be the number of possibilities for (Q¢—x[i], Q}_,[i]) € VQi—x[i]for0 < k <
5. For each possibility, we run through all carries (Cy;, C} ;) and all message bit
pairs (W[i], W/[i]). A binary 16 x 16 matrix indicates which transition possibilities
from (Ct i, Ct ;) to (Civ1,Cf,4q) can occur.

Using this 16 x 16 transition matrix, we can calculate the possible carry masks
for bit ¢ + 1 using the carry mask of bit ¢. For the least significant bit (i = 0),
only one carry mask is possible: the carry is (0,0) with probability 1. Each of the
edges in the graph has probability 1/n. Unlike in Fig. 6, there is never more than
one edge between two nodes. This step is repeated for every (Q:—[i], Q;_.[i]) €
VQ:i—x[i] for 0 < k < 5.

This calculation is performed for bits i = 0...31. We now consider the most sig-
nificant bit (i = 31). One carry mask indicates that none of the carries (Ct 31, C} 3)
are valid. P.(t) then equals the sum of all the other carry masks.

Total Work Factor N,

In the collision search tree, the average number of children of a node at step ¢ is
Fw(t) - Py(t). Only a fraction P.(t) of the nodes at step ¢ have children at all.
The search stops as the last step T'— 1 of the compression function is reached. We
can thus obtain the following recursive relation for the expected number of nodes
N;(t) at every step of the compression function:

1 fort=T-1,
0= {max (Ns(t+1) - ' (t) - P (1), B () for0<t<T—1 . "

The total work factor is then given by
Ny = Ng(t) . (9)

In tables, the base 2 logarithms of Fy (t), Py(t), Pe(t), Ns(t) and Ny(t) are shown.
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Table 8 — Lowest Hamming weights found for L-characteristics, not
taking the weight of V@41 for 0 <t < 20 into account
collision | near-collision | pseudo-collision
40 steps 30 26 27

45 steps 75 68 65

A difference with [2], is that in this work, the double conditions of Sect. 3.3 are
also taken into account in the calculation of the work factor. These are assumed to
be included in the definitions of P,(t) and P.(¢). This is because double conditions
are used in the actual collision search as well. Implementing this is possible with
minimal overhead, and can only improve Ny,. Experimental results of using these
double conditions will be given in Sect. 4.

4 Finding NL-characteristics for 45 Steps

To obtain a good NL-characteristic, Stage 1 of [2] consists of obtaining a sparse
L-characteristic to use as a starting point. As can be seen in Table 8, no suitable
L-characteristic could be found for 45 steps of the simplified HAS-V. The weight
of the V@41 for the first round is not taken into account, assuming for simplicity
that these can all be satisfied by single-message modification.

To overcome this problem, we looked for message differences that are localized
at a small number of steps of the internal states VQ.41. The Boolean functions f;
are particularly well suited to allow for NL-characteristics consisting of very short
collision regions. It can be seen that both f; and f3 allow any input difference
to be either passed on or canceled out at the output. For fo(B,C, D, E), this is
also the case for every input difference, except for an input difference at D, which
will always lead to an output difference. The HAS-V specification [14] reveals
that this is by design, in an attempt to satisfy the “Strict Avalanche Criterion
(SAC)” [22]. As the attacker can choose both messages m, m’ of a collision pair,
he can control the output differences of the f-function at certain positions (either
probabilistically, or by single- or multi-message modification). This allows for
more freedom in the construction of NL-characteristics, while still keeping the
probability of the characteristic high.

Differences in the message words m; are only introduced in m12[0] and m4[0].
Due to the message expansion, these differences can be found in Wig[0], Wis[0],
W21[0], Wa3[0]. Before and after this collision region, equality is imposed on the
internal state words.

In the short collision region, all conditions for VQ:11[i] are still unrestricted
(“?”) at Stage 1.

Stages 2 and 3 are the same as in [2]. In Stage 2, unrestricted conditions (“?”)
are randomly chosen, and the requirement that they are equal (“-”) is imposed.
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Table 9 — The work factor Ny, (in base 2 logarithm) after each of
the four stages

Stage 1 | Stage 2 | Stage 3 | Stage 4
without double conditions | 143.87 89.30 81.84 59.92
with double conditions 143.87 81.28 75.84 51.53

This stage is repeated several times, until a characteristic with a sufficiently low
work factor is obtained. Further in Stage 2, conditions (“x”) start to appear, which
are replaced by either (“u”) or (“n”) when selected. In Stage 3, local optimizations
are performed by going over all “~” conditions, and replacing them by “0” or “1”
if this improves the work factor. By repeating Stage 3 several times, the work
factor gradually decreases. The end result after Stage 3 is shown in Table 12, with
corresponding work factor N,, = 27584,

After Stage 3, adding a single extra condition will never decrease the work
factor. It is possible, however, to reduce the work factor even further. This is
done in an additional stage, Stage 4, not described in [2]. In Stage 4, not one,
but several conditions are added locally, as long as they do not worsen the work
factor. If adding multiple conditions improves the work factor, a minimal set
of conditions is derived from these, that still lowers the work factor. This set is
obtained by relaxing the additional conditions again, one by one, to see if they had
any impact on the global work factor. Only the conditions of this minimal set are
kept. Experiments show that it is even possible, that relaxing conditions decreases
the work factor of the NL-characteristic. This fourth stage is also repeated several
times. The end result is shown in Table 13, where a work factor Ny, of 2°1:53
is obtained. After the Stage 4, it is not possible to decrease the work factor by
adding or relaxing a single condition.

Note that the characteristics obtained after every stage are not necessarily the
best possible. Every stage can thus be performed several times, until a character-
istic is found that is good enough.

Experimental results indicating the impact of these double conditions on Ny
after each of the four stages, are shown in Table 9.

Although time limits did not allow us to find a colliding message pair, we have
verified for reduced versions that the complexity estimates accurately reflect the
actual search cost, both with and without the inclusion of double conditions.

5 Conclusion and Future Work

This paper shows how techniques developed for SHA-1 in [2] can be further im-
proved and generalized for a simplified variant of the hash function HAS-V. This
simplified variant consists of only a single stream.

For 45 steps of this simplified HAS-V, an NL-characteristic is constructed,
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requiring about 25153 step function evaluations, or about 246 compression function
evaluations, to find a collision. A lot of the message bits can still be freely chosen
when using this characteristic.

Stage 1 of method of De Canniére and Rechberger [2], the search for a good
L-characteristic, is replaced by the requirement that collisions occur in a very short
region. As the method described in this paper can be applied without finding good
L-characteristics first, it might be used for hash functions such as RIPEMD-160 [3],
for which also no good L-characteristics were found [10].

“Double conditions” are introduced as conditions for two pair of bits. They
can be used to speed up the actual collision search.

An extra stage, Stage 4, is introduced to further improve the work factor for
finding a collision. It is shown how this additional stage can reduce the work
factor from 275-%* step function evaluations, or about 27! compression function
evaluations, in Table 12, to 25153 or about 246 compression function evaluations,
in Table 13.
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A NL-characteristics

The NL-characteristics obtained after Stage 3 of Sect. 4 are shown in Table 12.

After Stage 4, Table 13 is obtained. The work factor Ny, improves from 2784 to
951.53

B A Two-bit Example

B.1 Introduction

Let n denote the word size in bits. We will write the differential probability of
addition modulo 2" as xdp™ (o, 8 — 7), where «, § and « are bitstrings, most
significant bit first. The best known method to find xdp™ was an exponential-in-n
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calculation, before Lipmaa and Moriai introduced their algorithm in [8]. In [9],
it was shown how xdp™ can be calculated as a series of matrix multiplications in
linear time in n.

In this section, we will calculate the xdp™ (11,01 — 10) by representing the ad-
dition as a graph and applying dynamic programming. We then show the relation
of this graph method with [9], as both algorithms can be implemented in O(n) by
using matrix multiplications. Afterwards, we mention several improvements and
extensions to the graph method. Although this two-bit example may seem con-
trived, we found a fully worked-out example to be very useful to help understand
the more abstract explanation of Fig. 3-6 in Sect. 3. There, an extension of the
graph method is used to represent the step update function of HAS-V.

B.2 Visualizing xdp* (11,01 — 10) in a Graph

For xdp™(ay || @,B1 || Bo — 71 || 1) = xdp™ (11,01 — 10), we consider two
additions, z = z +y and 2’ = 2/ +3/, as shown in Fig. 8. For this particular xdp™,
we define the input differences for the least significant bits (ag = zg @ 2 = 1
and By = yo ® y, = 1), and for the most significant bits (o = z1 @ 27 = 1 and
B1 = y1 @y} = 0). We assume that all valid inputs z, 2" and y,y’ are uniformly
distributed. We then find xdp™ (11,01 — 10) as the probability that the output
has difference 79 = 20 ® 2z, =0 and v3 = 21 D 2] = 1.

The calculation for the least significant bits is shown in Table 10. As there is
no carry input for the least significant bits, we only consider Cy = C| = 0. We list
all values that satisfy the input conditions (g and fy) for the least significant bit.
Note that the output condition (yg = 2o @ 2 = 0) is satisfied as well for all valid
inputs (Co, C, o, Yo, T, Yo)-

Table 10 — The summation for the least significant bits (2o, 2(),
where ap =xo @y =1and Sy =yo Dy, =1

Co 06 o Yo .1136 y6 Cl C{ 20 26 (7)) ﬂo Yo
0 0 0 O 1 1 0 1 0 O 1 1 0
0 0 0 1 1 0 0 0 1 1 1 1 0
0 0 1 0 0 1 0 0 1 1 1 1 0
0 0 1 1 0 O 1 0 0 0 1 1 0

We then draw each of these input values as the four rightmost edges in the
graph of Fig. 9. Every edge is labeled with the input conditions [xg yo { w0,
and starts at (Cp, Cpy). Together, these uniquely determine (zg, z}) and (Cy,Cy).
For now, the reader can ignore that some lines are dashed.

Next, we do the calculation for the most significant bits, as shown in Table 11.
We again list all values that satisfy the input conditions (a; and 81). Note that
now, several carry inputs (C,C7) are possible. The output condition (y; = 21 ®
2 = 1) is not always satisfied, implying that xdp™ (11,01 — 10) < 1.
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Table 11 — The summation for the most significant bits (z1,21),
where oy =21 @) =1land 81 =y1 ®y; =0

C, Cilaxr wy |y yp|Co Colzr 21 ||| B |m
0 0 0 0 1 0 0 0 0 1 1 0 1
0 0 0 1 1 1 0 1 1 0 1 0 1
0 0 1 0 0 0 0 0 1 0 1 0 1
0 0 1 1 0 1 1 0 0 1 1 0 1
1 0 0 0 1 0 0 0 1 1 1 0 0
1 0 0 1 1 1 1 1 0 0 1 0 0
1 0 1 0 0 0 1 0 0 0 1 0 0
1 0 1 1 0 1 1 0 1 1 1 0 0
0 1 0 0 1 0 0 1 0 0 1 0 0
0 1 0 1 1 1 0 1 1 1 1 0 0
0 1 1 0 0 0 0 0 1 1 1 0 0
0 1 1 1 0 1 1 1 0 0 1 0 0

Again, we draw each of the inputs of Table 11 as edges in Fig. 9. To improve
the readability, we use three separate coordinate systems on top of each other on
the left of the figure. These should in fact overlap: the same nodes are represented
three times. For example, four edges end in (Cs,C%) = (0,0). If the output
pairs are valid (y1 = 21 @ 2{ = 1), we use full lines, and if they are invalid
(v1 = z1 ® 21 = 0), dashed lines are used.

Due to backward propagation (explained in Fig. 5), the inputs [zo yo 2{ ¥}]
with values [00 11] and [11 00] become dashed lines as well: they will eventually
result in an incorrect output difference y; = 0. The probability xdp™ (11,01 — 10)
is then equal to the number of paths in the graph with valid inputs (z,2’,v,y’)
and outputs z, 2z’ (full lines), divided by the number of paths that have valid inputs
(x,2'y,y") (full or dashed lines). This ratio is equal to 8/16, or 1/2.

Note that storing this graph does not require a lot of memory. For every bit in
the n-bit addition, we need to store 2° bits. Each of these 2° bits is either set to
1 if the input (Co, C{, xo, Yo, x{, ¥4) is valid, and 0 otherwise. For the entire n-bit
addition, we thus need to store only 2°n bits; the memory requirement is O(n).

B.3 Calculating xdp* (11,01 — 10) Using Matrix Multiplications

Similar to [9], we can calculate xdp™ as a series of matrix multiplications. The
graph of Fig. 9 can be seen as a first-order Markov chain. We have [1 0 0 0] as
the initial distribution, as the input carry of the addition is Cp = C} = 0 with
probability 1. All three other input carries (Cy, C{j) have probability 0.

As the input conditions for [xg yo =} y(] are given, these specify the transi-
tion matrix of the Markov chain. Every column contains the transition probabili-
ties for one carry input (Cy, C{) to every carry output (C,C7). We left-multiply
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the initial distribution by this transition matrix. We do the same for every subse-
quent bit of the n-bit addition.

Lastly, we sum all probabilities (by left-multiplying by [1 1 1 1]): the carry
outputs (Cy,C},) are not used, so all of them are valid. This gives us the total
probability of xdp™.

B.4 Extending the Graph Method

As the reader may have noticed, the matrices of the previous section are larger
than those in [9]. This is because we do not take the symmetry into account:
although the value of C; @ C! would be sufficient, we keep track of the values of
(C;, CY). This symmetry exists because we restrict the input differences a, f and
the output differences v to exclusive-or differences.

The graph based method of the previous section, however, can also support the
signed differences that were used for the cryptanalysis of MD5 [21], and as well as
all the other generalized conditions of Table 7.

It is straightforward to generalize the graph method to the addition of three
or more words. In this case, we extend each of the n adders of Fig. 8 to three or
more input bits. This will increase the maximal values of the carry (C;, C}): for
example, the addition of four bits (and the carry input) can have a maximal carry
output of 3.

In this case, value of the carry (C;, C!) is equal to all output bits of the adder
at position ¢, except the least significant bit. This can be seen as a variant of
Fig. 8, where three or more bits are input to every adder.

In fact, the method can be generalized for any combination of additions, XORs
and Boolean functions, as long as no rotations are present (except at the input
or output). It is this calculation that was used for every step of SHA-1 in [2],
and is also used for every step of HAS-V in this paper. By constructing higher-
order Markov chains, the graph method was used in [5] to efficiently calculate the
differential probability of a multiplication by 9, given by xdp™ (z,z < 3).
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Figure 8 — Calculating z = z+y and 2’ = 2’ +y3’. All variables with
subscripts represent one bit.
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Figure 9 — Graph representation to calculate xdp™* (11,01 — 10).
Only valid input pairs are shown. Full lines are used for the eight
paths that have valid output pairs (y; = 21 @ 2] = 1), and dashed
lines are used for paths with invalid output pairs (y1 = 21 @ 21 = 0)
As there are eight of each, the ratio gives xdp* (11,01 — 10) =
8/16 = 1/2. The three coordinate systems on top of each other
on the left represent the same nodes three times. This makes the

drawing more readable, however note that, for example, four edges
end in (Cq, CY) = (0,0).
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Table 12 — NL-characteristic of 45 steps after Stage 3, work factor
N,, = 275:84
t VQit1 VW, Fw | Pa()) [ Pe(D) [Ns(D)
5 [00001111010010111000011111000011
-4 [01000000110010010101000111011000
-3[01100010111010110111001111111010
-2 [11101111110011011010101110001001
-1{01100111010001010010001100000001
0 32| 0.00| 0.00| 0.00
1 32| 0.00| 0.00| 0.00
2 32| 0.00| 0.00| 0.00
3 32| 0.00| 0.00| 0.00
4 32| 0.00| 0.00| 0.00
5 32| 0.00| 0.00| 0.00
6 32| 0.00| 0.00| 0.00
7 10| 30| 0.00| 0.00| 0.00
8 32| 0.00| 0.00| 0.00
9 32| 0.00| 0.00| 0.00
10 0| 0.00| 0.00| 0.00
11 32| 0.00| 0.00| 0.00
12 32| 0.00| 0.00| 0.00
13 0 32| -1.00| 0.00{22.60
14 [ =mmmmmmmmmmm oo 010001101100~ 0[-12.00| 0.00|53.60
15 001011---1-0 0| -9.00| 0.00|41.60
16 [ ---0-—————————————~ unnnnnnnnnnnn u| 30(-14.00(-1.00|32.60
----0100u111010 32(-13.00| 0.0048.60
18 [0--1------ 1-—m————— uu-uu0001110 000 u| 28(-19.77|-7.77|67.60
19| 01-unn--nnu------------ 11000nn10 0-19.00|-1.97|75.83
20 | n-u0uu001-000~ --0-0000-10 1-101--00| 0]-14.30|-2.30|56.83
21 |u-u-0n11----0--------- 11-010--10 u| 0[-18.98|-6.42|42.53
22| --1-110---011-======--~ 0-n----11 10| 0[-10.00|-1.00|23.56
23|--0-0-10 n-0---0 000 u| 0| -7.56|-1.61|13.56
24|--1-1--1 1--—- 0| -4.00| 0.00| 6.00
25 0---- 0| -1.00| 0.00| 2.00
26 1--—- 0| -1.00| 0.00| 1.00
27 0| 0.00| 0.00| 0.00
28 0| 0.00| 0.00| 0.00
29 0| 0.00| 0.00| 0.00
30 0| 0.00| 0.00| 0.00
31 0| 0.00| 0.00| 0.00
32 0| 0.00| 0.00| 0.00
33 0| 0.00| 0.00| 0.00
34 0| 0.00| 0.00| 0.00
35 0| 0.00| 0.00| 0.00
36 0| 0.00| 0.00| 0.00
37 0| 0.00| 0.00| 0.00
38 0| 0.00| 0.00| 0.00
39 0| 0.00| 0.00| 0.00
40 0| 0.00| 0.00| 0.00
41 0| 0.00| 0.00| 0.00
42 0| 0.00| 0.00| 0.00
43 10| 0| 0.00] 0.00| 0.00
44 0| 0.00| 0.00] 0.00
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Nw — 251.53

t VQit1 VW, Fw | Pu(t)| Pe(t)| Ns(t)
-5100001111010010111000011111000011

-4101000000110010010101000111011000

-3/01100010111010110111001111111010

-2(11101111110011011010101110001001

-1]01100111010001010010001100000001

0 32| 0.00| 0.00| 0.00
1 32| 0.00| 0.00| 0.00
2 32| 0.00| 0.00| 0.00
3 32| 0.00| 0.00| 0.00
4 32| 0.00| 0.00| 0.00
5 32| 0.00| 0.00| 0.00
6 32| 0.00| 0.00| 0.00
7 ----00 10| 28| 0.00| 0.00( 0.00
8 32| 0.00| 0.00| 0.00
9 32| 0.00| 0.00| 0.00
10 0| 0.00| 0.00| 0.00
11 0 32| -1.00| 0.00| 0.00
12 0-0 32| -2.00| 0.00| 0.00
13 1-00 0-- 32| -4.00| 0.00|23.48
14| =========———m——m o 0100011011001 0(-13.00| 0.00|51.48
15| -=---- 00-========-~ 0001011011110 0(-17.00| 0.00]38.48
16 [-1-0--110-----—---- unnnnnnnnnnnn | 10 1-00---0u| 25(-17.83|-4.24|21.48
17(01-1--1-—---—- --110100u111010 0 31(-18.00| 0.00|28.65
18 00-1-1110011111----~ uuluu0001110 01000--1--u| 25|-20.00(-1.00|41.65
19 (01-unn--nnul1ll------ 1011000nn10 | 000-00000100000----~~ 1-100000000 0]-11.58|-8.59|46.65
20 |n-uOuu0010000--- ---0000000-10 [ 000001011110---1-----= 0101011000 0| -6.10|-4.62|35.07
21 |u-u-0n11--110--------- 11-01---10| 10 1-00---0u 0(-10.03|-1.00 | 28.96
22|--1-110---011----———-—~ 0-n----11|----00 10 0| -7.46]-0.12|18.93
23 |--0-0-10 n-0---0 01000--1--u 0| -5.48| 0.00|11.48
24 |--1-1--1 1---- 0| -4.00| 0.00| 6.00
25 0---- 0| -1.00| 0.00| 2.00
26 1-——- 0| -1.00| 0.00| 1.00
27 0| 0.00| 0.00| 0.00
28 0| 0.00| 0.00| 0.00
29 0| 0.00| 0.00| 0.00
30 0| 0.00| 0.00| 0.00
31 0| 0.00| 0.00| 0.00
32 0 0| 0.00| 0.00| 0.00
33 0| 0.00| 0.00| 0.00
34 000-00000100000---=~~ 1-100000000 0| 0.00| 0.00| 0.00
35 0| 0.00| 0.00| 0.00
36 0| 0.00| 0.00| 0.00
37 0| 0.00| 0.00| 0.00
38 0| 0.00| 0.00| 0.00
39 0| 0.00| 0.00| 0.00
40 0| 0.00| 0.00| 0.00
41 000-00000100000------ 1-100000000 0 0.00| 0.00| 0.00
42 0| 0.00| 0.00| 0.00
43 ----00 10 0| 0.00| 0.00| 0.00
44 0| 0.00| 0.00| 0.00
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invalidating the design claim that at least 24 rounds of ESSENCE
are secure against differential cryptanalysis. We develop a novel tech-
nique to satisfy the first nine rounds of the differential characteristic.
Non-randomness in the outputs of the feedback function F' is used
to construct several distinguishers on a 14-round ESSENCE block ci-
pher and the corresponding compression function, each requiring only
217 output bits. This observation is extended to key-recovery attacks
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1 Introduction

Recent attacks by Wang et al. on the widely used hash functions MD4 [16],
MD5 [17], RIPEMD [16] and SHA-1 [18], as well as other hash functions, show
that collisions for these hash functions can be found much faster than expected by
the birthday paradox [15].

In search for a new secure hash function standard, NIST announced the SHA-3
hash function competition [12]. The ESSENCE family of cryptographic hash func-
tions, designed by Martin [8], advanced to the first round of this competition. It
is a family of block cipher-based hash functions using the Merkle-Damgard mode
of operation. The ESSENCE family uses simple algorithms that are easily paral-
lelizable and well-established mathematical principles. ESSENCE comes with a
proof of security against linear and differential cryptanalysis, that until this paper
remained unchallenged.

First, we describe several undesired properties of the ESSENCE L function.
These can be used to build a semi-free-start collision attack [11, pp. 371-372] on
31 out of 32 rounds of the ESSENCE-512 compression function using a differential
characteristic. This directly invalidates the design claim that at least 24 rounds
of ESSENCE are resistant against differential cryptanalysis [8]. To build our
attack, we describe a novel technique to satisfy the conditions imposed by the
characteristic in the first nine rounds. We do not know of a similar technique in
existing literature.

Then, we find that the ESSENCE compression functions use a non-linear feed-
back function F' that is unbalanced. We first exploit this to build efficient dis-
tinguishers on 14-round versions of the ESSENCE block ciphers as well as the
compression functions. These distinguishers require only 2'7 output bits. We then
show how to use these results to recover the key with a few known plaintexts and
a computational effort less than that of exhaustive search. We also show that,
under some circumstances, the attacks on 14-round ESSENCE could be extended
to the full 32-round block cipher and compression function.

Following this, we observe that the omission of round constants in ESSENCE
leads to several attacks that cannot be prevented by increasing the number of
rounds. A slide attack can be applied to any number of rounds of the ESSENCE
compression function. We also find fixed points for any number of rounds of the
ESSENCE block cipher, that lead to a compression function output of zero.

ESSENCE was not advanced to the second round of the SHA-3 competition;
however, its appealing features (like design simplicity and hardware efficiency)
make any effort on tweaking it appear worthwhile. Therefore, in this paper, we
also suggest some countermeasures to thwart the aforesaid attacks.

In later work, Naya-Plasencia et al. [13] present different results on ESSENCE.
Our paper presents not only differential cryptanalysis but also distinguishing at-
tacks and slide attacks. Furthermore, some of our techniques can easily be gener-
alized to other block ciphers and hash functions.

The paper is organized as follows. Section 2 describes the compression function
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of ESSENCE. In Sect. 3, we define and calculate the branching number of the
linear L function for both linear and differential cryptanalysis. As the branching
number turns out to be quite low, we use this observation to build a semi-free-start
collision attack for 31 out of 32 rounds in Sect. 4. To satisfy the first nine rounds
of the differential characteristic of the semi-free-start collision attack, we develop
a technique in Sect. 5. Our distinguishers that exploit the weakness of F' function
are presented in Sect. 6. In the same section, we also show how our distinguishing
attacks can be converted into key-recovery attacks on the block ciphers. Following
this, we show how the omission of round constants allows us to find slid pairs
(Sect. 7) and fixed points (Sect. 8) for any number of rounds. Finally, Sect. 9
enlists our countermeasures and Sect. 10 concludes the paper.

2 Description of the Compression Function of
ESSENCE

The inputs to the compression function of ESSENCE are an eight-word chain-
ing value and an eight-word message block, where each word is 32 or 64 bits in
length, for ESSENCE-224/256 and ESSENCE-384/512 respectively. The compres-
sion function uses a permutation F, that in turn uses a nonlinear feedback function
F', a linear transformation L, some XORs and word shifts.

The message block m = (my, ..., m7) forms the initial value of an eight-word
state k = (ko, ..., k7). In the case of the block cipher, m is the key k = (ko, ..., k7).
Similarly, the chaining value ¢ = (co,...,c7) is the initial chaining value of an

eight-word state r = (rq, ..., 77). In the case of the block cipher, ¢ is the plaintext.
Both states are iterated N times. The designer recommends N to be a multiple
of 8 N > 24 for resistance to differential and linear cryptanalysis and N = 32
as a measure of caution [8]. Figure 1 illustrates one round of ESSENCE. The

N\ U N U

Figure 1 — One round of ESSENCE; each r,, and k,, (n =0,...,7)
is a 32- or 64-bit word

compression function uses a Davies-Meyer feed-forward (see Fig. 2). That is, at
the end of N rounds, the value r7||rg||75]|74||r3||r2||r1]|70 is XORed with the initial
chaining value. The result is the r7||rg||r5||r4||rs||72]|71]|r0 for the next iteration.
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Tini E —d) > Tfin

Figure 2 — The compression function of ESSENCE; F is the round
function of ESSENCE when iterated N times, k denotes the message
block, 7;,; denotes the initial value of r7||rg||7rs||r4||r3||r2||r1||70 and
7in denotes the value of r for the next iteration

3 Branching Number of the L Function

The L function of ESSENCE is a linear transformation from 32 (or 64) bits to
32 (or 64) bits and it is the only component that causes diffusion between the
different bit positions of a word. Therefore, its properties are very important for
both linear and differential cryptanalysis.

In this section, we focus on the branching number of the L function for both
linear and differential cryptanalysis. Let the branching number for differential
cryptanalysis be the minimum number of non-zero input and output differences
for the L function. These branching numbers are 10 and 16 for the 32-bit and
64-bit L functions respectively. If we were to consider only one-bit differences at
either the input or the output of L, these numbers would be 14 and 27 respectively.

The branching number for linear cryptanalysis can be defined as the (non-zero)
minimum number of terms in a linear equation relating the input and output bits
of the L function. These branching numbers are 10 and 17 for the 32-bit and
64-bit L function respectively. Considering linear relations that involve only one
bit at the input or one bit at the output, we would find branching numbers of 12
and 26 respectively.

Although one-bit differences are spread out well by the L function, this is
clearly not the case for differences in multiple bits. This problem is most severe
with the 64-bit L function. In the next section, we will show how this property
can be used to build narrow trails for all digest sizes of ESSENCE.

4 A 31-Round Semi-Free-Start Collision Attack For
ESSENCE-512

In this section, we will focus only on ESSENCE-512 for the sake of brevity and
clarity. As the strategy is not specific to any particular digest size, these results
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can easily be generalized to all digest sizes of ESSENCE.

Although the ESSENCE L function spreads out one-bit differences very well,
the previous section showed that this is not the case for differences in multiple
bits. We therefore propose to use the differential characteristic of Table 1, to
obtain 31-round semi-free-start collisions for ESSENCE-512.

To construct narrow trails, we use the non-zero difference A with the lowest
possible Hamming weight. For this difference, we impose the condition (—A) A
L(A) = 0, where — represents the negation operation and all logical operations
are to be performed bitwise. This can be formulated as follows: if there is a
difference at the output of the L function at a particular bit position, there must
be a difference at the input of L at this bit position as well. This requirement
is necessary, as the F' function can absorb or propagate an input difference at
the output, but if no input difference is present, then there won’t be an output
difference either at this particular bit position. This places a restriction on the
output difference of the L function for this bit position.

There exist exactly 8 differences A with a weight of 17 and lower weight differ-
ences A do not exist. These differences are available in Appendix A, along with a
method to calculate them efficiently.

The last two columns of Table 1 provide an estimate of the probability that
the characteristic is satisfied for every round. For these, we have assumed that the
F' function propagates or absorbs an input difference with equal probability. A
more accurate calculation of these probabilities takes into account that the shift
register causes input values of the F' function to be reused.

We find that this probability is different for bit positions where A and L(A)
both contain a difference, and for bit positions where only A contains a difference.
As such, of all differences A with weight 17, we select the difference that has
the highest weight of L(A). Five such differences exist, and we arbitrarily select
the difference with the smallest absolute value, A = 0A001021903036C3. The
corresponding L(A) = 0200100180301283 has weight 11. As such, we find that
rounds 10 to 16 of the key schedule, and rounds 18 to 24 of the compression
function, each have a probability of 278-415-6=8-11 — 9=138.49 " For rounds 18 to 23
of the key schedule, we find a probability of 27 7-193:6=7-11 — 9—120.16

To find semi-free-start collisions, we first search for a message pair that satisfies
the key expansion characteristic, and then afterwards search for a chaining value
pair that satisfies the compression function characteristic. These two searches can
be decoupled, as the chaining value does not influence the key schedule. As such,
the probabilities for the message pairs and IV pairs can be summed up instead of
multiplied.

As will be shown in the next section, only two round function calls are required
to find a message (or IV) that satisfies the first nine rounds of the key expansion
(or compression function). To find a pair of messages (or IVs) that satisfy the
differential characteristic, we use the same depth-first search algorithm that was
introduced for SHA-1 in [2]. The memory requirements of this search algorithm are
negligible. We assume that the cost of visiting a node in this search tree is equiva-
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lent to one round function call, or 27° compression function calls. The complexity
calculation of [2] then shows that a 31-round semi-free-start collision can be found
using the characteristic of Table 1 after 2138-49+120.16+1=5 4 9138.49+1-5 _ 9254.65
equivalent compression function calls. This is faster than a generic birthday attack,
which requires about 22°6 compression function evaluations.

5 Finding Message Pairs for the First Nine Rounds

To find messages that satisfy the first few rounds of the characteristic, single-
message modification [17] cannot be used. This is because the entire message is
loaded into the r-registers before the round function is applied, instead of injecting
one message word every round. We therefore propose to use another technique,
that turns out to be even more efficient than single-message modification. This
concept is explained for the key schedule only, as it is completely analogous for
the compression function.

In this section, we will adopt a stream-based notation for the round function.
Denote the initial eight-word state (kv, kg, ks, ka, k3, k2, k1, ko) as (x_2,2_1, 0,
X1, %2, T3, T4, Ts5). After clocking one for one round, the value of the register kg is
represented by xg, and so on. In this text, we will not make a distinction between
linear and affine equations, and use the term “linear equation” for any equation
that contains no monomials of a degree more than one.

Finding a pair of messages that satisfy the characteristic, can be seen as solving
a set of non-linear equations defined by the round function. Solving a set of non-
linear equations is a difficult problem in general. This is even more the case as we
are not looking for a single solution, but for a very large set of solutions.

What we can do, however, is impose linear conditions on the variables x( to
Z12, in such a way that the round function behaves as a linear function. We
then obtain a set of linear equations, of which every solution corresponds to a
message pair that follows the first nine rounds of the characteristic. Enumerating
the solutions of this linear space has a negligible computation cost compared to a
round function evaluation.

For every solution, we have to apply the round function twice to obtain x13
and x14. These are guaranteed to follow the characteristic as well. They serve as
a starting point to satisfy the conditions of the remaining characteristic in a prob-
abilistic way. After reaching round 31, we can calculate x_5 and z_; by applying
two inverse round functions. These values will always satisfy the characteristic.

Let A[j] denote the j-th significant bit (; = 0 denotes the least significant bit
or LSB) of A. The only non-linear function of ESSENCE is the F' function. As
the F' function operates on every bit in parallel, the linear conditions that have
to be added, depend on the values A[j] and L(A)[j] at every bit position j. The
equations we use are given in Appendix B. Note that for bit positions j where
Alj] = 0, it is not a problem if zg[j] or z12[j] are represented by a non-linear
expression, as these bits are not involved in any of the linear conditions anyway.
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Table 1 — A 3l-round semi-free-start collision differential char-

acteristic for the ESSENCE-512 compression function; differences

from R to Y are arbitrary, 0 represents the zero difference, A
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As the equations in Appendix B show, we need to add 10 equations for every
bit position j where A[j] = 1, and 6 equations if A[j] = 0. Also, to represent the
64-bit values xg to x12 resulting from the round function, we need to add 5 - 64
additional equations for outputs of the round function. In total, we obtain a set
of 10-17+6- (64 — 17) + 5 - 64 = 772 linear equations in 13 - 64 = 832 binary
variables.

We build this system of equations by successively adding 10+5 = 150r 645 =
11 more equations for every bit position j. With some small probability, the system
of equations becomes inconsistent. If this happens, we add a different set of linear
equations for this bit position. Even this may fail with some probability, in which
case we add a linearization of the F' function using 7+ 5 instead of 6 + 5 equations
for this particular bit position. This may or may not decrease the number of
solutions slightly, but it allows us to avoid backtracking.

For one particular run, using only the equations mentioned in Appendix C,
we find a consistent system of 772 linear equations in 832 binary variables. The
number of linearly independent equations turns out to be 771. As such, we have
found 2832771 /2 = 260 pairs of messages that satisfy the first 9 rounds. We divide
by two to avoid counting the same pair twice. If more than 2% pairs of messages
are needed, we can simply run this program again to find the next set of messages.
As including these 771 equations would use up a lot of space, we give only one of
the 260 message pairs in Table 6.

This technique is very similar to the techniques of multi-message modifica-
tion [17], tunneling [7], neutral bits [1] and the amplified boomerang attack [6].
These 2%° messages correspond to 60 auxiliary differential paths for the amplified
boomerang attack. No results are known to us where these auxiliary differential
paths were also obtained in a fully automated way.

6 Distinguishing Attacks

Our motivational observation is that the non-linear feedback function F' is unbal-
anced. Exploiting this, we first construct distinguishers on 14-round ESSENCE
(both the block cipher and the compression function) and then for the full 32-round
ESSENCE. Towards the end of this section, we present key-recovery attacks on
the ESSENCE family of block ciphers. These attacks can be seen as an immediate
consequence of our distinguishing attacks.

6.1 Weakness in the Feedback Function of ESSENCE

In [8], the designer notes that the security of the algorithms is heavily dependent on
F', as it is the only nonlinear function in ESSENCE. This gave us some motivation
to study the properties of F'. The function F takes seven 32-bit or 64-bit words (say,
a,...,g) asinputs and produces a 32-bit or 64-bit word as the output. The function
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works in a bitsliced manner. The exact description of F is largely irrelevant to our
analysis; hence, we refer the interested reader to Appendix D.

Let F(a,b,c,d,e, f,g)[j] denote the j-th significant bit (j = 0 denotes the
LSB) of F(a,b,c,d,e, f,g). Our motivational observation is the following (con-
firmed both experimentally and from the tables in Appendix D of [8]).

Observation 1: If a, ..., g are uniformly distributed, then
. 1 1
PT.[F(aab,cvdveafag)[ﬂ:0]:§+277 . (1)

6.2 Distinguishers on 14-Round ESSENCE

In this section, we use Observation 1 to build distinguishers on 14 rounds of
ESSENCE. First, we consider the block cipher, then the compression function.

Let ky[j], rn[j] and L(ry,)[j] respectively denote the j-th significant bits (j = 0
denotes the LSB) of k,,, 7, and L(r,). In the beginning, suppose the key k and
the initial value r are such that kq[0] = 79[0]. Then, after 7 rounds, k7[0] = r7[0].
Now, if after the 7th round, L(r¢)[0] = 0 and F(rg, 75, 74,73,72,71,70)[0] = 0 (from
Observation 1, this occurs with 0.5 + 277 probability”), then after the 8th round,
we will have 79[0] = 0. Note that the condition L(rg)[0] = 0 after the 7th round
is the same as the condition L(r1)[0] = 0 after the 8th round. Therefore, when
the key and the plaintext are initially related in the form ko[0] = r¢[0], and when
the outputs after 8 rounds satisfy the condition L(r1)[0] = 0 (this occurs with
probability 1/2), then Pr[ro[0] = 0] = 1/2 +2~7. Now, ro and r; after the 8th
round are respectively equal to rg and 77 after the 14th round. Hence, when the
key and the plaintext are related in the form ko[0] = r¢[0], and when the outputs
after 14 rounds satisfy the condition L(r7)[0] = 0, then

Prlrgl0] = 0] = % + 2—17 : (2)

6.3 The Distinguisher

A distinguisher is an algorithm that distinguishes one probability distribution from
another. In cryptography, a distinguisher is an algorithm that distinguishes a
stream of bits from a stream of bits uniformly distributed at random (i.e., bitstream
generated by an ideal cipher).

Our distinguisher on ESSENCE is constructed by collecting n outputs rg[0],
after 14 rounds, generated by as many keys (so that the n samples are indepen-
dent) such that ko[0] = ro[0] initially. Let Dy and D; denote the distributions

"The bit L(ro)[0] is the XOR-sum of r¢[0] and several other bits of 7. We assume
that all ro[j] are independent and uniformly distributed. Then the condition L(r¢)[0] =0
does not affect Pr[ro[0] = 0] and therefore the bias in Pr[F(re,rs,74,73,72,71,70)[0] = 0]
is also unaffected.
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of the outputs from 14-round ESSENCE block cipher and a random permuta-
tion, respectively. Given L(r7)[0] = 0, let py and p; respectively denote the
probability that rg[0] = 0 holds given the outputs are collected from 14-round
ESSENCE and the probability that r6[0] = 0 holds given the outputs are gener-
ated by a random source. That is, pg = 1/2+ 277 (from (2)) and p; = 1/2. Then,
o = n-po and g1 = n - p; are the respective means of Dy and D;. Similarly,
oo =+/n-po-(1—pp)and o1 = y/n-p1- (1 —p;1) denote the respective standard
deviations of Dy and D;. When n is large, both these binomial distributions can
be approximated with the normal distribution. Now, if |ug — p1| > 2(0¢ +01), i.e.,
n > 216, the output of the cipher can be distinguished from a random permutation
with a success probability of 0.9772 (since the cumulative distribution function of
the normal distribution gives the value 0.9772 at u + 20) provided L(r7)[0] = 0.
To test whether n is large enough for the normal approximation to the binomial
distribution to hold, we use a commonly employed rule of thumb: n-p > 5 and
n-(1—p) > 5, where p € {po,p1}. A simple calculation proves that both the
above inequalities hold when n = 216, Since the condition L(r7)[0] = 0 holds with
0.5 probability, we need to generate 2 - 21¢ = 217 samples of r4[0] from as many
keys (such that ko[0] = r0[0] initially) to build the distinguisher with a success
probability of 0.9772. Our simulations support this result.

6.4 Distinguishers using Biases in Other Bits

Since the function F' operates on its input bits in a bitsliced manner, it is easy to see
that the distinguisher presented for the LSB of rg also works for more significant
bits. In other words, if initially ko[j] = ro[j], for any j in {0,...,31}, then with 216
samples of rg[j] at the the end of 14 rounds, it is possible to distinguish 14-round
ESSENCE block cipher from a random permutation with a success probability of
0.9772.

6.5 Distinguishers for the Compression Function

The ESSENCE compression function is a Davies-Meyer construction in which the
output of the block cipher is XORed with the initial chaining value. In other
words, the output of the compression function is the XOR-sum of the values of
r7||rsl|rs||ral|rs||r2]|r1||ro before and after applying the permutation E. This XOR-
sum is the chaining value r7||rg||rs||r4||rs|| 72||r1]|ro for the next iteration. As
we assume that an attacker can observe both the chaining value input and the
compression function output, it is trivial to undo the Davies-Meyer feedforward
and apply the distinguishers of the 14-round block cipher.

These observations are extended to 32-round ESSENCE in Appendix E.
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6.6 Key-Recovery Attacks

In this section, we show that the distinguishing attacks on the ESSENCE family
of block ciphers can be converted into key-recovery attacks.

Let us say that we have n known plaintexts. Considering that the plaintexts
are initially loaded directly into the r-registers [9], we expect n/2 plaintexts to
have ro[j] = 0. Without loss of generality, let us consider this partition of the
plaintext space where rg[j] = 0. Now, from our analysis in Sect. 6.2, we can
collect statistics on L(r7)[j] @ r6[j] at the end of the 14 rounds and observe its
tendency for sufficiently large n — if L(r7)[j] @ rs[j] = 0 more often, then the key
bit ko[j] = 0; likewise, if L(r7)[j] ®7¢[j] = 1 more often, then the key bit ko[j] = 1
(the results are swapped if we begin with plaintexts in which rq[j] = 1).

Using a similar analysis, we can recover the rest of the key bits in kg. The
number of known plaintexts required is 2'®. This is obtained as follows, using
standard linear cryptanalysis [10]. We are interested in finding whether, after 14
rounds, the number of times that L(r7)[j] ® r6[j] = 0 holds is greater than n/4.
Accordingly, we determine the key bit kg[j]. Unlike in the distinguishing attacks,
a confidence interval for the uniform distribution is not required. From [10] we
obtain that the success probability of this method is 0.9772 when n/2 = |p —
1/2|72, where p is the probability that L(r7)[j] & r6[j] = 0 (or 1). Substituting
p = 1/2 £ 277 in the above formula for n, we get n = 21°. It follows that the
probability that this recovered key word (kg) is correct is (0.9772)32 ~ 0.48. The
other 224 bits of the key can be exhaustively searched. Thereby, we expect that
2221/0.48 ~ 27251 keys have to be tested before the correct key is obtained with
guaranteed success. This key-recovery attack can also be applied on the block
cipher of ESSENCE-224 (which is identical to the block cipher of ESSENCE-
256) with the same complexities. For the block ciphers of ESSENCE-384/512,
we require 2'® known plaintexts and a computational effort equivalent to testing
2448 /(0.9772)54 ~ 2450-1 keys (where exhaustive search requires testing 252 keys)
for guaranteed success.

These observations are extended to 32-round ESSENCE in Appendix F.

7 Slide Attack

In this part of the study, we provide an efficient method to find two inputs (¢, m)
and (¢/,m’) such that their output (after feed-forward) » and r’ are shifted versions
of each other; i.e., if r; =7, for 0 <i < 7.

The necessary conditions on (¢, m) and (¢, m’) are

Lc=c for0<i<T7,
2. ¢ =my Der @ F(egy ... c0) D Licy)

3. my=mj for0<i<7,
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4. my =m7 ® F(ms,...,mp) ® L(mg) .

If these conditions hold, then after 32 rounds (and XORing with the initial value),
the output of the compression function satisfies r; = rj,; for 0 <1 < 7.

As an example, let m; = 0 for all i. Then we must choose m} = 0 for all i > 0,
and my, = 1™ where 1" represents the 32-bit or 64-bit unsigned integer of which
all bits are set. Let ¢; = 0 for all ¢, let ¢, = 0 for all ¢ > 0, and let ¢j = 1™. Then,
the two outputs of the compression function (with N = 32) are:

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
FFFFFFFF 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
FFFFFFFF 00000000 00000000 00000000 00000000 00000000 00000000 00000000
6B202EF2 BB610A07 97E43146 9BD34AE3 C8BC7CBF BSEE4A3C B6118DC5 775F7BBF
R’ |CO7ABCFA 6B202EF2 BB610A07 97E43146 9BD34AE3 C8BC7CBF BSEE4A3C B6118DC5

NS

3|33

For every choice of (¢,m), an input (¢, m’) such that this property on the
compression function outputs is obtained can be found in time equivalent to about
one compression function evaluation. Hence, in total about 2%!2 pairs of inputs
producing slid pairs can be found by the above method. This observation can
easily be extended to slide the output by 2,3,...,7 steps.

7.1 Slid Pairs with Identical Chaining Values

It is also possible to find slid pairs with ¢ = ¢/. Let the initial state of the register
R be of the form (co,cq,...,co), where ¢y is selected randomly. For a message
block m of the form (mg, m1,...,m7) where my; = F(co,...,co) @ L(co) and the
rest of the m;’s are selected arbitrarily, select m’ as (mg, mf,...,m%), such that
mj = m; for i =0,1,2,...,6 and my = my @ F(ms,...,mo) ® L(mg). Then,
the outputs of the compression function for m and m’ also satisfy r; = rj,; for
0 <i < 7. It is possible to select ¢ in 23? different ways, and for each selected c, we
can choose 2732 different message blocks, therefore the number of such slid pairs
is 22°6. As an example, assume ¢y = 243f6a88, which is the truncated fractional
part of 7, and all “free” message words are zero.

,c'|243F6A88 243F6A88 243F6A88 243F6A88 243F6A88 243F6A88 243F6A88 243F6A88
m |[00000000 00000000 00000000 00000000 00000000 00000000 00000000 F6B1EB63
m’ |094E149C 00000000 00000000 00000000 00000000 00000000 00000000 00000000
R |BE31AAO1 EB6E9F07 EAD99889 6FE79B44 391CCD35 67FDB8B6 FC3AAOF6 6E80148E
' |F86D77C6 BE31AAO1 EBGE9F07 EAD99889 6FE79B44 391CCD35 67FDB8B6 FC3AAOF6

o

=

8 Fixed Points for the ESSENCE Block Cipher

If a fixed point for one round of the ESSENCE block cipher can be found, this
automatically leads to a fixed point for all 32 steps of the block cipher. After
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applying the Davies-Meyer feed-forward, the resulting compression function output
will then be zero.

If two different fixed points are found, this would lead to a free-start collision.
This free-start collision is preserved after the output padding is applied.

For a fixed point for one round, co =c; =...=crand mg=my = ... = my
should hold. This is obvious: after one step, all register values move one place, but
must have the same value as in the previous step to form a fixed point. Moreover,
the round update functions should satisfy the following equations.

F(co, co, co, o, o, Co, €o) & co ® L(co) ® mo = co

F(mq, mo, mo, mo, mo, Mo, mg) B mo & L(mg) =mg .

Solving the equations, one gets the following values for ESSENCE-256 and
ESSENCE-512:

ESSENCE-256 ESSENCE-512
Co 993AE9B9 D5B330380561ECF7
mo 307A380C 10AD290AFFB19779

Using similar methods, we have found that the only fixed points for two, three
or four rounds is the same fixed point for one round applied two, three or four
times respectively. We have not been able to extend this result for more rounds.
As such, we have not been able to find a free-start collisions using this technique.
Depending how the compression function is used, however, it might be undesirable
that we can easily find inputs that fix the compression function output to zero.

9 Measures to Improve the Security of ESSENCE

From the analysis in Sect. 3-6, it is clear that ESSENCE has weaknesses in L and
F.

The concatenation of both the input and output of the L function can be
seen as an error-correcting code with [n, k] = [64,32] or [128,64]. The branching
number is then equal to the error-correcting code of these dimensions with the
highest minimum weight. Best known results from coding theory [5] can be used
to construct an L function with a branching number for both linear and differen-
tial cryptanalysis of 12 or 22 respectively. Better codes may exist according to
currently known upper bounds for the minimum weight, but have so far not been
found.

A search can be made for variants of these codes (possibly with a slightly lower
branching number) that satisfy all design criteria for the L function. Although
the resulting function will always be linear, it may however not be possible to
implement it as an LFSR.

In (5), the function F is in algebraic normal form (ANF). We know that the
coefficient of the maximum degree monomial in this ANF is equal to the XOR-sum
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of all the entries in the truth table of F. To thwart the attacks in Sect. 6 and
Appendix F, it is necessary that F' is balanced. Discarding the maximum degree
monomial is a possible solution.

Other countermeasures include increasing the number of rounds and adding
round constants. In Sect. 7 and Sect. 8, we saw how the omission of round constants
allowed slid pairs and fixed points to be found. Increasing the number of rounds
does not thwart these attacks, but it increases the security margin against the
semi-free-start collision attacks of this paper.

10 Conclusions and Open Problems

In this paper, we first presented a semi-free-start collision attack on 31 out of 32
rounds with a complexity of 225465 compression function evaluations. We find
messages that satisfy the first nine rounds of the differential characteristic of the
semi-free-start collision attack as the solution of a large set of linear equations. We
found that six linear input conditions are sufficient to make F' behave as a linear
function in Table 5. It is an open problem if solutions using fewer equations exist.

We also presented a set of distinguishers on 14-round ESSENCE. The distin-
guishers can be applied to the block cipher as well as the compression function.
Each of the distinguishers on 14-round ESSENCE requires 2'7 output bits. The
distinguishers work on all digest sizes of ESSENCE with the same complexity. It
has also been shown how the distinguishing attacks can be turned into key-recovery
attacks.

We then showed how the omission of round constants allowed slid pairs and
fixed points to be found. This cannot be prevented by increasing the number of
rounds.

Finally, we suggested some measures to improve the security of ESSENCE.
These suggestions are rather preliminary and need to be worked on further in
order to obtain a more secure family of hash functions.
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A Finding the Lowest Weight Difference A

We wish to find a difference A that satisfies

(=AY A L(A) =0 (3)

and

hw(A) <w , (4)

where hw(A) is the number of bits set in A and w is to be as small as possible.

We proceed as follows. Let w represent the (still unknown) weight of the
lowest weight difference A. We then split w into two integers wgy and wy, such that
wo +w; = w and |w; —wp| < 1. Let L~ represent the inverse L function, such
that L=1(L(z)) = x. Let M(z) = L(z) ® . The design of ESSENCE guarantees
that M is invertible, as L is not allowed to have any eigenvalues in the ground
field.

First step: We enumerate all © where hw(x) < wp. After calculating A =
L=1(x), we check (3) and (4).
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Table 2 — All differences A with hw(A) = 17 that satisfy (3); there
are no solutions where hw(A) < 17 and (3)
A
2461822430680025
48C3044860D0004A
91860890C1A00094
0A001021903036C3
1400204320606D86
2800408640C0ODBOC
5000810C8181B618
A001021903036C30

Second step: We enumerate all y where hw(y) < w;. After calculating A =
M~(y), we check if (3) and (4).

Equation (3) implies that the bit positions where L(A) is 1, is always a subset of
bit positions where A is 1. Therefore, we only have to consider two cases: the case
where the set of bit positions where L(A) is 1 contains no more than wq elements,
and the case where the set bit positions where L(A) is 0 and A is 1 contains not
more than w; elements. As wg + w; = w, these two steps are guaranteed to find
all A that satisfy (3) and (4). If no solution is found, we increase w by one and
perform the two steps again, enumerating only the new values of = and y.

The total complexity of this search is (3.1 C%*) + (Z;U:lo C’?‘*). As we find
w = 17 here, the total number of 64-bit linear function evaluations is (Z?:o 0?4) +

(Z?:o 0?4) ~ 235, This calculation can be performed in less than a minute on a

recent desktop computer. The solutions are shown in Table 2.

B Making I’ Behave as a Linear Transformation

We consider three separate cases, depending on the values of A and L(A) for a
particular bit position j.

If A[j] = 1, we can enumerate all possible input conditions, such that F behaves
linearly and has the required differential behavior. Because we enumerate all
possibilities, we obtain an optimal result: it is not possible to add fewer than 10
linear equations. All existing solutions where 10 linear equations are added, are
shown in Table 3 (for L(A)[j] = 1) and Table 4 (for L(A)[j] = 0).

If A[j] = 0: the differential behavior is always satisfied: if there is no input
difference, there will not be an output difference either. We found that adding
6 equations is sufficient. We do not rule out the possibility that fewer than 6
equations are sufficient. The solutions we found are given in Table 4.

We will omit the index j, so that xy to x12 represent one-bit variables. The
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Table 3 — Making F linear and imposing the required differential
behavior for position j where A[j] = L(A)[j] = 1 can be done by
adding no more than 10 linear equations; exactly four such solutions

exist
Solution 1 Solution 2 Solution 3 Solution 4
ToPxro =1 1 =1 1 =1 1 =1
x1 =0 T2 Paxs =0 ToPxs =0 xro =1
r3 =1 rxo D7 =1 o@D x7r =1 x3 =20
T4 =1 T2 Dxg =0 To @ axg =0 gy =1
x5 =1 To Pxrg =0 ToPxrg =0 x5 =1
x7 =0 o Dxi1a =1 x3 =20 x7 =0
;rgzl 33320 1’421 .%‘821
.2139:0 .I'4:1 1'10:0 CEng
z10 =0 z10 =0 z11 =0 z10 =0
T12 =1 11 =0 T12 =1 z11 =0
F(zo,...,x6) = x6 P 1 o P x6 o P xe zo P x6
F(z1,...,27) = T2®1 T2 @1 T2®1 0
F(mz,. ,xg): 0 xro P 1 T2 P 1 0
F xr3, .71‘9) = 0 X5 X5 1
F(QZ4, 7.1,‘10) = 1 1 1 1
F($5, ,£E11) = 1 0 0 0
F(I6, 75612) = 0 x7 D1 0 z12®1
expressions F'(zg,...,x) and F(zg,...,z12) are not added to the system of linear

equations of the attack, as this is not necessary. They are only mentioned to show
that their differential behavior is correct.

C A Message Pair for the First Nine Rounds

We give a message pair that satisfies the first 9 rounds of the characteristic of
Table 1 in Table 6.

D The Feedback Function F

We denote the field of two elements by Fy. The nonlinear feedback function, F', of
ESSENCE-224/256 (respectively ESSENCE-384/512) takes seven 32-bit (respec-
tively 64-bit) input words and outputs a single 32-bit (respectively 64-bit) word
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Table 4 — Making F linear and imposing the required differential
behavior for position j where A[j] = 1 and L(A)[j] = 0 can be done
by adding no more than 10 linear equations; exactly one such solution

exists
Solution 1
ToDxo =0

X1 = 0
xr3 = 1
T4 = 1
5 = 1
Ty = 0
xrg = 1
Tg = 0
10 = 0
r12 = 1

F(mo, . ,Ie) = 1

F(x1,...,27) = T2 1

F(:IZQ7 . ,.%'8) = 0

F I3, . ,Ig) = 0

F(I4, . ,3310) = 1

F(xs, ,11711) = 1

F(.’L‘(;, 723'12) = 0

as follows:

F(a,b,c,d,e, f,g) =abcdefg + abedef + abeefg + acdefg + abceg + abde f+
abdeg + abefqg + acdef + acdfg + acef g + adefqg + bedf g+
bdefg + cdefg + abcf + abcg + abdg + acdf + adef + adeg+
adf g + bede + beeg + bdeg + cdef + abe + abe + abf + abg+
acg + adf + adg + aef + aeg + bef + beg + bde + bdf + beg+
bfg+ cde + cdf + def + deg + df g + ad + ae + bc + bd+
cd+ce+df +dg+ef+fg+a+b+c+f+1, (5)

where the multiplication and addition are taken in Fy (i.e., they are the same as
bitwise XOR and bitwise AND, respectively).

E Distinguishing Attacks on the Full 32-Round
ESSENCE-256

The attacks described in Sect. 6.2 can be easily extended to the full ESSENCE-256
block cipher. Let us suppose the key k and the plaintext are related such that
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Table 5 — Making F linear for position j where A[j] = L(A)[j] =0

can be done by adding no more than 6 linear equations; at least six

such solutions exist

Solution 1 Solution 2 Solution 3
I3 = 0 I3 = 0 T3 = 1
1’4:0 .’E4:() £C4:1
Ty = 1 Ty = 1 Iy = 1
Te = 0 T — 1 Teg — 1
.’L‘7=1 $7=1 1‘7:1
$9:1 Igil 178:1
F(xy,...,27) = 11 o) 1
F(l'27. ,168): 1’2@1’8@1 Zg@l T2
F xIs, ,"Eg) = .’Eg@]. ng@l T9
F($4, ,1‘10) = xrs 0 Tg B r1gP1
F(zs,...,211) = | 28@ 210D 1 | 210D 211 D1 | 210 D211 D1
Solution 4 Solution 5 Solution 6
£C4=0 .%'420 {L'4=0
Ty = 1 Ty = 1 Iy = 1
Teg — 1 T — 1 Te — 1
56720 $7—0 1‘7—0
1138:1 .Tgi]. 1’8:1
559:0 1’10—0 (Ell—].
F(zy,...,z7) = | 21Dz D1 1 Prod1 1Pl
F(zg,...,28) = 3D 1 r3®1 r3®1
F(.Z'g, .,339) = 0 9 T9g
F(Z‘4, 751310) = x10 B 1 To D1 g B r1oP1
F(I5, ,Ill) = T10B 1 Tg D1 Tog P x10D1

Table 6 — A message pair satisfying the first 9 rounds of the charac-

teristic of Table 1
1 m;

!
my

/
m; b m;

N O U W N O

FFFFFFFFFFFFFEFEE
1A001021983836CB
5809832A1DEA2458
SAEFSFEBEBOFDAAB
32F9D8578015D297
0D031372423B91AC
B804ACO8CDITE348
ES8BB8E649DC3B35F

FFFFFFFFFFFFFEFEE
1A001021983836CB
5809832A1DEA2458
SAEFS5FEBEBOFDAAB
32F9D8578015D297
0D031372423B91AC
B804ACO8CDITE348
E2BB9E450DF3859C

0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0A001021903036C3
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after 18 rounds, 79[0] = ko[0]. Given this, using similar arguments as those used
to derive (2), we obtain that at the end of 32 rounds, if L(r7)[0] = 0, then

Prirol0] = 0] = 5 + 57 - (6)

We can thus construct a distinguisher by collecting 2!7 outputs r6[0], after 32
rounds, generated by as many keys (so that the samples are independent) given
that after 18 rounds, ko[0] = 7[0]. In other words, the adversary first tests whether
ko[0] = 7o[0] after 18 rounds. If this condition is satisfied, she collects the output
r6[0] after 32 rounds provided L(r7)[0] = 0. Therefore, this constitutes a known-
key distinguishing attack which one may view as an attack on a large set of weak
keys. Alternatively, the attack scenario may be such that two bits of the internal
state after 18 rounds are leaked to the adversary. A similar assumption was made
in [3], as a model for certain side-channel attacks. More generally, this scenario
is captured by the notion of leakage resilience [4,14], i.e., security when “even a
bounded amount of arbitrary (adversarially chosen) information on the internal
state (...) is leaked during computation” [4]. Although this assumption leads
to trivial attacks (e.g., observe the full internal state of AES at the penultimate
rounds), it assists to evaluate security against a wider range of adversaries, and to
better understand the resilience of algorithms against “extreme” adversaries.

Since the condition ko[0] = r¢[0] (after 18 rounds) holds with 0.5 probability,
the attacker would need to examine with 27 -2 = 218 randomly generated keys to
mount the distinguishing attack with a success probability of 0.9772.

It is easy to see that distinguishers of the same complexity can be built by
collecting any other bit of rg (after 32 rounds) because F' operates in a bitsliced
manner. As in Sect. 6.5, when the attacker can observe both the chaining value
input and the compression function output, the above distinguishers can be applied
onto the compression function as well.

F Key-Recovery Attacks on 32-Round ESSENCE

In Appendix E, we extended the distinguisher on 14-round ESSENCE-256 to 32
rounds by selecting plaintexts based upon the intermediate value of ro[j] and ko[j]
at round 18. This result may be viewed in terms of a known plaintext key-recovery
attack against a vulnerable implementation of the ESSENCE-256 block cipher. Let
us say that we are attacking such an implementation of the 32-round ESSENCE-
256 block cipher where through some means (side-channel analysis, cache pollution,
etc.) we can read bit j of rg after 18 rounds. Like in Sect. 6.6, we focus on a subset
of 214 plaintexts where ro[j] = 0 (or 1) for all 2!* texts after 18 rounds. Applying
the same analysis as in Sect. 6.6 to the remaining 14 rounds gives us the value
of ko[j] at round 18. If our vulnerable implementation allows us to read all the
bit positions of ry, then with probability 0.48, we can recover the full key-word
ko at round 18. Since the key schedule is a bijection (and easily invertible) we
can recover the original key with minimal effort. Again, a similar analysis can be
applied to the other members of the ESSENCE family of block ciphers.
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Abstract. An increasing number of cryptographic primitives use op-
erations such as addition modulo 2", multiplication by a constant
and bitwise Boolean functions as a source of non-linearity. In NIST’s
SHA-3 competition, this applies to 6 out of the 14 second-round candi-
dates. In this paper, we generalize such constructions by introducing
the concept of S-functions. An S-function is a function that calculates
the i-th output bit using only the inputs of the i-th bit position and
a finite state S[i]. Although S-functions have been analyzed before,
this paper is the first to present a fully general and efficient frame-
work to determine their differential properties. A precursor of this
framework was used in the cryptanalysis of SHA-1. We show how
to calculate the probability that given input differences lead to given
output differences, as well as how to count the number of output dif-
ferences with non-zero probability. Our methods are rooted in graph
theory, and the calculations can be efficiently performed using matrix
multiplications.

Keywords: Differential cryptanalysis, S-function, xdp™, xdp*¢, adp?,
counting possible output differences, ARX.

1 Introduction
Since their introduction to cryptography, differential cryptanalysis [7] and linear

cryptanalysis [26] have shown to be two of the most important techniques in both
the design and cryptanalysis of symmetric-key cryptographic primitives.

*The framework proposed in this paper is accompanied by a software toolkit, available at
http://www.ecrypt.eu.org/tools/s-function-toolkit
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Differential cryptanalysis was introduced by Biham and Shamir in [7]. For
block ciphers, it is used to analyze how input differences in the plaintext lead to
output differences in the ciphertext. If this happens in a non-random way, this
can be used to build a distinguisher or even a key-recovery attack.

The analysis of how differences propagate through elementary components of
cryptographic designs is therefore essential to differential cryptanalysis. As typical
S-boxes are no larger than 8 x 8, this analysis can be done by building a differ-
ence distribution table. Such a difference distribution table lists the number of
occurrences of every combination of input and output differences.

The combination of S-box layers and permutation layers with good crypto-
graphic properties, are at the basis of the wide-trail design. The wide-trail design
technique is used in AES [10] to provide provable resistance against both linear
and differential cryptanalysis attacks.

However, not all cryptographic primitives are based on S-boxes. Another op-
tion is to use only operations such as addition modulo 2", exclusive or (xor),
Boolean functions, bit shifts and bit rotations. For Boolean functions, we assume
that the same Boolean function is used for each bit position i of the n-bit input
words.

Each of these operations is very well suited for implementation in software, but
building a difference distribution table becomes impractical for commonly used
primitives where n = 32 or n = 64. Examples using such constructions include
the XTEA block cipher [32], the Salsa20 stream cipher family [5], as well as the
hash functions MD5, SHA-1, and 6 out of 14 second-round candidates? of NIST’s
SHA-3 hash function competition [31].

In this paper, we present the first known fully general framework to analyze
these constructions efficiently. It is inspired by the cryptanalysis techniques for
SHA-1 by De Canniére and Rechberger [12] (clarified in [30]), and by methods
introduced by Lipmaa, Wallén and Dumas [23]. The framework is used to calcu-
late the probability that given input differences lead to given output differences,
as well as to count the number of output differences with non-zero probability.
Our methods are based on graph theory, and the calculations can be efficiently
performed using matrix multiplications. We show how the framework can be used
to analyze several commonly used constructions.

Notation is defined in Table 1. Section 2 defines the concept of an S-function.
This type of function can be analyzed using the framework of this paper. The
differential probability xdp™ of addition modulo 2", when differences are expressed
using xor, is analyzed in Sect. 3. We show how to calculate xdp™ with an arbitrary
number of inputs. In Sect 4, we study the differential probability adp® of xor
when differences are expressed using addition modulo 2". Counting the number of
output differences with non-zero probability is the subject of Sect. 5. We conclude
in Sect. 6. The matrices obtained for xdp™ are listed in Appendix A. We show

3The hash functions BLAKE [4], Blue Midnight Wish [14], CubeHash [6], Shabal [8],
SIMD [20] and Skein [13] can be analyzed using the general framework that is introduced in
this paper.
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Table 1 — Notation
Notation | Description
x|y concatenation of the strings x and y
|A] number of elements of set A
LS shift of x to the left by s positions
T3> s shift of « to the right by s positions
T & s | rotation of x to the left by s positions
x>> s | rotation of x to the right by s positions
T+y addition of z and y modulo 2™ (in text)
zHy addition of z and y modulo 2™ (in figures)
x[i] selection: bit (or element) at position ¢ of word z,
where i = 0 is the least significant bit (element)

all possible subgraphs for xdp™ in Appendix B. In Appendix C, we extend xdp™
to an arbitrary number of inputs. The computation of xdpxc is explained in
Appendix D.

2 S-Functions

In this section, we define S-functions, the type of functions that can be analyzed
using our framework. In order to show the broad range of applicability of the pro-
posed technique, we give several examples of functions that follow our definition.

An S-function (short for “state function”) accepts n-bit words aq,as,...,ax
and a list of states S[i] (for 0 < i < n) as input, and produces an n-bit output
word b in the following way:

(bli], Sli + 1) = f(au[i], azldl, ..., axli), S[]), 0<i<n . (1)

Initially, we set S[0] = 0. Note that f can be any arbitrary function that can be
computed using only input bits ay[i], az[i], . .., ag[i] and state S[i]. For conciseness,
the same function f is used for every bit 0 < ¢ < n. Our analysis, however, does
not require functions f to be the same, and not even to have the same number of
inputs. A schematic representation of an S-function is given in Fig. 1.

Examples of S-functions include addition, subtraction and multiplication by a
constant (all modulo 2"), exclusive-or (xor) and bitwise Boolean functions. Al-
though this paper only analyzes constructions with one output b, the extension to
multiple outputs is straightforward. Our technique therefore also applies to larger
constructions, such as the Pseudo-Hadamard Transform used in SAFER [1] and
Twofish [34], and first analyzed in [21].

With a minor modification, the concept of S-functions allows that the inputs
a1, as,...,a; and the output b are rotated (or reordered) as well. This corresponds
to rotating (or reordering) the bits of the input and output of f. This results in
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ar[n — 1]ag[n — 1]ag[n — 1] a1[1]az[l]  ax[l] a1[0]az[0]  ax[0]
0 0 5 A
} !
bln — 1] b[1] b[0]

Figure 1 — Representation of an S-function

exactly the same S-function, but the input and output variables are relabeled
accordingly. An entire step of SHA-1 as well as the MIX primitive of the block
cipher RC2 can therefore be seen as an S-function. If the extension to multiple
output bits is made, this applies as well to an entire step of SHA-2: for every step
of SHA-2, two 32-bit registers are updated.

Every S-function is also a T-function, but the reverse is not always true. Pro-
posed by Klimov and Shamir [19], a T-function is a mapping in which the i-th bit
of the output depends only on bits 0, 1, ..., 4 of the input. Unlike a T-function, the
definition of an S-function requires that the dependence on bits 0, 1,...,7—1 of the
input can be described by a finite number of states (independent of n). Therefore,
squaring modulo 2" is a T-function, but not an S-function.

In [11], Daum introduced the concept of a narrow T-function. A w-narrow T-
function computes the i-th output bit based on some information of length w bits
computed from all previous input bits. An S-function, however, requires only the
i-th input bit and a state S[i] to calculate the i-th output bit and the next state
S[i + 1]. There is a subtle difference between narrow T-functions and S-functions.
If the number of states is finite and not dependent on the word length n, it may not
always be possible for a narrow T-function to compute S[i + 1] from the previous
state S[i] and the i-th input bit.

It is possible to simulate every S-function using a finite-state machine (FSM),
also known as a finite-state automaton (FSA). This finite-state machine has &
inputs aq[i], az[il, ..., ar[i], and one state for every value of S[i]. The output is
b[i]. The FSM is clocked n times, for 0 < i < n. From (1), we see that the output
depends on both the current state and the input. The type of FSM we use is
therefore a Mealy machine [27].

The straightforward hardware implementation of an S-function corresponds to
a bit-serial design. Introduced by Lyon in [24,25], a bit-serial hardware architec-
ture treats all n bits in sequence on a single hardware unit. Every bit requires one
clock cycle to be processed.

The S-function framework can also be used in differential cryptanalysis, when
the inputs and outputs are xor- or additive differences. Assume that every input
pair (z1, o) satisfies a difference A®z, using some group operator e. Then, if both
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x1 and A®z are given, we can calculate xo = 1@ A®z. It is then straightforward to
define a function to calculate the output values and the output difference as well.
This approach will become clear in the following sections, when we calculate the
differential probabilities xdp™ and adp® of modular addition and xor respectively.

3 Computation of xdp™

3.1 Introduction

In this section, we study the differential probability xdp™ of addition modulo 2%,
when differences are expressed using xor. Until [22], no algorithm was published
to compute xdp™ faster than exhaustive search over all inputs. In [22], the
first algorithm with a linear time in the word length n was proposed. If n-bit
computations can be performed, the time complexity of this algorithm becomes
sublinear in n.

In [23], xdp™ is expressed using the mathematical concept of rational series. It
is shown that this technique is more general, and can also be used to calculate the
differential probability adp® of xor, when differences are expressed using addition
modulo 2".

In this paper, we present a new technique for the computation of xdp™, using
graph theory. The main advantage of the proposed method over existing tech-
niques, is that it is not only more general, but also allows results to be obtained
in a fully automated way. The only requirement is that both the operations and
the input and output differences of the cryptographic component can be written
as the S-function of Sect. 2. In the next section, we introduce this technique to
calculate the probability xdp™.

3.2 Defining the Probability xdp™*

Given n-bit words z1,y1, A®z, A®y, we calculate APz using

)

To — x1 B A%z |

w

y2 < 1 A%
21— 2x1+Y1,

[

22 < T2+ Y2 ,

A~ o~~~
=) e~
= L D O =

APz — 2B 2 .
We then define xdp™ (a, 3 — 7) as

+ _ |{($1ayl)1A@$:Q>A@926,A€Bz=7}|
xdp™ (o, B =) = {(z1,y1) : A®z = o, ABy = B} ) (7)

=47"{(z1,91) : A%r =0, A%y = B, A%z =9}, (8)

as there are 2" - 2" = 4™ combinations for the two n-bit words (x1,y1).
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3.3 Constructing the S-Function for xdp™

We rewrite (2)-(6) on a bit level, using the formulas for multiple-precision addition
in radix 2 [28, §14.2.2]:

wa[i] « z1[i] © A®x[i] | (9)
yoli] = yili] ® A®yli] | (10)
z1[i] = i @yl @ ea[i] (11)
i+ 1)« (@[] + ya i) + eafi]) > 1, (12)
zoi] = x2[i] ® yoli] ® co[i] (13)
cali 4+ 1] <= (@2[i] + y2[i] + co[i]) > 1, (14)
AP2[i] + 2[i] ® 21[d] (15)
where carries ¢1[0] = ¢2[0] = 0. Let us define
S[i] « (eald], e2li]) (16)
Sli+ 1]+ (e1[i + 1], e2[i + 1]) (17)

Then, (9)-(15) correspond to the S-function
(A%2[i], S[i + 1)) = f(@1[i], pa[i], A¥2[i], A®y[i], S[i]), O0<i<nm . (18)

Because we are adding two words in binary, both carries ¢;[i] and ¢3[i] can be
either 0 or 1.

3.4 Computing the Probability xdp™

In this section, we use the S-function (18), defined by (9)-(15), to compute xdp™.
We explain how this probability can be derived from the number of paths in a
graph, and then show how to calculate xdp™ using matrix multiplications.

Graph Representation.

For 0 <4 < n, we will represent every state S[i] as a vertex in a graph (Fig. 2). This
graph consists of several subgraphs, containing only vertices S[i] and S[i + 1] for
some bit position i. We repeat the following for all combinations of («[], B[], v[i]):

Set afi] « A®z[i] and B[i] « A®y[i]. Then, we loop over all values of
(@1[4], y1[7], S[i]). For each combination, A®z[i] and S[i] are uniquely determined
by (18). We draw an edge between S[i] and S[i + 1] in the subgraph, if and only
if A®2[i] = v[i]. Note that several edges may have the same set of endpoints.

For completeness, all subgraphs for xdp™ are given in Appendix B. Let o, 3,7~
be given. As shown in Fig. 2, we construct a full graph containing all vertices S|i]
for 0 < 7 < n, where the edges between these vertices correspond to those of the
subgraphs for «[i], B[], v[7].
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Theorem 1. Let P be the set of all paths from (c1[0], c2[0]) = (0,0) to any of the
four vertices (¢1[n], c2[n]) € {(0,0),(0,1),(1,0),(1,1)} (see Fig. 2). Then, there is
exactly one path in P for every pair (x1,y1) of the set in the definition of xdp™,
given by (8).

Proof. Given m[i], yi[i], A®x[i], A®yli], c1]i] and cofi], the values of A®z[i],
c1[i + 1] and cq[i + 1] are uniquely determined by (9)-(15). All paths in P start
at (¢1]0], c2[0]) = (0,0), and only consist of vertices (cq[i], c2[i]) for 0 < i < n that
satisfy (9)-(15). Furthermore, edges for which A®z[i] # 7[i] are not in the graph,
and therefore not part of any path P. Thus by construction, P contains every pair
(1,y1) of the set in (8) exactly once. O

Figure 2 - An example of a full graph for xdp'. Vertices
(c1]d], e2li]) € {(0,0),(0,1),(1,0),(1,1)} correspond to states S[i].
There is one edge for every input pair (z1,y;). All paths that sat-
isfy input differences «, § and output difference v are shown in bold.
They define the set of paths P of Theorem 1.

Multiplication of Matrices.

The differential («[i], 5[i] — ~[é]) at bit position 4 is written as a bit string wli] «
ali] || Bl7] || v[é]. Each wli] corresponds to a subgraph of Appendix B. As this
subgraph is a bipartite graph, we can construct its biadjacency matrix A,; =
[k;], where x; is the number of edges that connect vertices j = S[i] and k =
S[i + 1]. These matrices are given in Appendix A.

Let the number of states S[i] be N. Define 1 x N matrix L=[1 1 --- 1]
and N x1matrix C=[1 0 --- 0 ]7. For any directed acyclic graph, the num-
ber of paths between two vertices can be calculated as a matrix multiplication [9].
We can therefore calculate the number of paths P as

|P| = LAw[n—l] co Aw[l]Aw[O]C . (19)
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Using (8), we find that xdp™(a, 3 — ) = 47"|P|. Therefore, we can define

A* | = Ayli/4, and obtain

wli

As such, we obtain a similar expression as in [23], where the xdp™ was calculated
using the concept of rational series. Our matrices AZ}M are of size 4 x 4 instead of
2 x 2, however. We now give a simple algorithm to reduce the size of our matrices.

3.5 Minimizing the Size of the Matrices for xdp™.

Corresponding to (20), we can define a non-deterministic finite-state automaton
(NFA) with states S[i] and inputs w[i]. Compared to a deterministic finite-state
automaton, the transition function is replaced by a transition relation. There are
several choices for the next state, each with a certain probability. This NFA can
be minimized as follows.

First, we remove non-accessible states. A state is said to be non-accessible, if
it can never be reached from the initial state S[0] = 0. This can be done using a
simple algorithm to check for connectivity, with a time complexity that is linear
in the number of edges.

Secondly, we merge indistinguishable states. The method we propose, is similar
to the FSM reduction algorithms found independently by [17] and [29]. Initially,
we assign all states S[i] to one equivalence class T'[i] = 0. We try to partition this
equivalence class into smaller classes, by repeating the following steps:

o We iterate over all states S[i].

e For every input w[i] and every equivalence class T'[¢], we sum the transition
probabilities to every state S[i] of this equivalence class.

o If these sums are different for two particular states S[i], we partition them
into different equivalence classes T7[i].

The algorithm stops when the equivalence classes T'[¢] cannot be partitioned fur-
ther.

In the case of xdp™, we find that all states are accessible. However, there are
only two indistinguishable states: T[i] = 0 and T[i] = 1 when (cq1][i], c2[i]) are
elements of the sets {(0,0),(1,1)} and {(0,1), (1,0)} respectively. Our algorithm
shows how matrices A;‘Lm of (20) can be reduced to matrices A;u[i] of size 2 x 2.
These matrices are the same as in [23], but they have now been obtained in an
automated way. For completeness, they are given again in Appendix A. Our
approach also allows a new interpretation of matrices A/ (i in the context of S-
functions (18): every matrix entry defines the transition probability between two
sets of states, where all states of one set were shown to be equivalent by the
minimization algorithm.
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3.6 Extensions of xdp™

In this section, we show how S-functions not only lead to expressions to calculate
xdp™ (a, B — =), but can be applied to related constructions as well.

Multiple Inputs xdp™ (o, 3,... — 7).

Using the framework of this paper, we can easily calculate xdp™ for more than two
(independent) inputs. This calculation can be used, for example, in the differen-
tial cryptanalysis of XTEA [32] using xor differences. In [15], a 3-round iterative
characteristic («,0) — (a,0) is used, where o = 0x80402010. In the third round
of the characteristic, there are two consecutive applications of addition modulo 2.
Separately, these result in probabilities xdp™ (a,0 — a) = 273 and xdp™ (o, @ —
0) = 273, It is shown in [15] that the joint probability xdp™ («, 0, — 0) is higher
than the product of the probabilities 273 - 273 = 276 and is estimated to be
24755 Using the techniques presented in this paper, we evaluate the exact joint
probability to be 273. We also verified this experimentally. The calculations are
detailed in Appendix C. This result can be trivially confirmed using the commu-
tativity property of addition: xdp™ (a, a — 0) - xdp™(0,0 — 0) = xdp™ (a, & — 0)
= 273, Nevertheless, our method is more general and can be used for any input
difference.

Multiplication by a Constant xdp>©.

A problem related to xdp™, is the differential probability of multiplication by a
constant C' where differences are expressed by xor. We denote this probability
by xdp*©. In the hash function Shabal [8], multiplications by 3 and 5 occur.
EnRUPT [33] uses a multiplication by 9. In the cryptanalysis of EnRUPT [18], a
technique is described to calculate xdp*®. This technique is based on a precursor
of the framework in this paper. In Appendix D, we show how each of these
probabilities can be calculated efficiently, using the framework of this paper. The
example of xdp*? is fully worked out.

Pseudo-Hadamard Transform xdp'!'T.

The Pseudo-Hadamard Transform (PHT) is defined as PHT(zq,22) = (221 +
x9,x1 + x2). It is a reversible operation, used to provide diffusion in several
cryptographic primitives, including block ciphers SAFER [1] and Twofish [34]. Tts
differential properties were first studied in [21]. If we allow an S-function to be
constructed with two outputs by and by, the analysis of this construction becomes
straightforward using the techniques of this paper.
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Step Functions of the MD4 Family.

The MD4 family consists of several hash functions, including MD4, MD5, SHA-1,
SHA-2 and HAS-160. Currently, the most commonly used hash functions world-
wide are MD5 and SHA-1. The step functions of MD4, HAS-160 and SHA-1 can
each be represented as an S-function. This applies as well to the MIX primitive
of the block cipher RC2. They can therefore also be analyzed using our frame-
work. The calculation of the uncontrolled probability P, (¢) in the cryptanalysis
of SHA-1 [12,30] uses a precursor of the techniques in this paper. By making the
extension to multiple outputs, the same analysis can be made as well for the step
function of SHA-2.

4 Computation of adp®

4.1 Introduction

In this section, we study the differential probability adp® of xor when differences
are expressed using addition modulo 2. The best known algorithm to compute
adp? was exhaustive search over all inputs, until an algorithm with a linear time
in n was proposed in [23].

We show how the technique introduced in Sect. 3 for xdp™ can also be applied
to adp®. Using this, we confirm the results of [23]. The approach we introduced
in this section is conceptually much easier than [23], and can easily be generalized
to other constructions with additive differences.

4.2 Defining the Probability adp®

Given n-bit words x1,y1, ATz, ATy, we calculate ATz using

To— 21+ ATz,

[\
[\

Y2 —y1 + Aty
Z1 21Dy,

[\
=~

Zo <~ 2D Y2 ,

~ o~~~
[\) [\
ot w
T — O Y —

Atz 20— 21 .
Similar to (8), we define adp®(a, 8 — 7) as

{(z1,91) ATz =a, ATy = B,A%2 =1}
H(z1,11) : Atz = a, Aty = 8} '
:4_n|{(55171/1) :A+$:a7A+y:B,A+Z:7}| ) (27)

adp”(a, f —7) =

as there are 2" - 2" = 4™ combinations for the two n-bit words (x1,y1).
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4.3 Constructing the S-function for adp®

We rewrite (21)-(25) on a bit level, again using the formulas for multiple-precision
addition and subtraction in radix 2 [28, §14.2.2]:

xali] = x1[i] ® AT z[i) @ e1[d] (28)
cili + 1] « (1 [i] + AT zli] + e1[i]) > 1, (29)
yali] + y1i] © AT y[i] ® ezfi] , (30)
cali + 1] + (y1[i] + ATyli] + cali]) > 1, (31)
z1[] +— z1[d] ® a1 ld] (32)
29[i] + 22[i] ® yali] , (33)
AT2[i] + (22[i] & 21[i] & c3[i])[0] (34)
esli 4+ 1) + (22]i] — z1[d] + es[d]) > 1, (35)

where carries ¢1[0] = ¢2[0] = 0 and borrow ¢3[0] = 0. We assume all variables to
be integers in two’s complement notation, all shifts are signed shifts. Let us define

Sli] « (eld], e2ld], esli]) (36)
Sli+1] < (exli + 1), eali + 1), esli + 1)) - (37)

Then (28)-(35) correspond to the S-function
(AT 2[i], Sli + 1) = f(@1lil, yald], ATald), ATy[i], S[i]), 0<i<n . (38

Both carries ¢1[i] and cz[i] can be either 0 or 1; borrow c3[i] can be either 0 or —1.

4.4 Computing the Probability adp®

Using the description of the S-function (38), the calculation of adp® follows directly
from Sect. 3.4. We obtain eight matrices A,,; of size 8 x 8. After applying the
minimization algorithm of Sect. 3.5, the size of the matrices remains unchanged.
Here, we use the expression —4 - c3[i] + 2 - ¢ca[i] + ¢1[i] as an index to order the
states S[i]. The matrices we obtain are then permutation similar to those of [23];
their states S’[i] can be related to our states S[i] by permutation o:

01 2 3 456 7
"_(04261537)' (39)
We calculate the number of paths using (19). From (27), we get adp®(a, § —
7) = 47"|P|. Therefore, we can define A, = A,[;)/4, and obtain

adp®(a, B =) = LAY,y Al Ao C - (40)
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5 Counting Possible Output Differences

5.1 Introduction

In the previous sections, we showed for several constructions how to calculate the
probability that given input differences lead to a given output difference. A related
problem is to calculate the number of possible output differences, when the input
differences are given. We say that an output difference is possible, if it occurs with
a non-zero probability.

First, we describe a naive algorithm to count the number of output differences.
It has a time complexity that is exponential in the word length n. We investigate
both improvements in existing literature, as well as cryptanalysis results where
such a calculation is necessary.

Then, we introduce a new algorithm. We found it to be the first in existing
literature with a time complexity that is linear in n. We show that our algorithm
can be used for all constructions based on S-functions.

5.2 Algorithm with a Exponential Time in n
Generic Exponential-in-n Time Algorithm.

A naive, but straightforward algorithm works as follows. All output differences
with non-zero probability can be represented in a search tree. Every level in this
tree contains nodes of one particular bit position, with the least significant bit
at the top level. This tree is traversed using depth-first search. For each output
difference with non-zero probability that is found, we increment a counter for the
number of output differences by one. When all nodes are traversed, this counter
contains the total number of possible output differences. The time complexity of
this algorithm is exponential in n, the memory complexity is linear in n.

Improvement for xdc™ (o, 3).

We introduce the notation xdc*(a, ) for the number of output xor-differences
of addition modulo 27, given input xor-differences o and 8. In [3], xdcT was
used to build a key-recovery attack on top of a boomerang distinguisher for 32-
round Threefish-512 [13]. They introduced a new algorithm to calculate xdc*.
The correctness of this algorithm is proven in the full version of [3], i.e. [2]. The
algorithm, however, only works if one of the inputs contains either no difference,
or a difference only in the most significant bit. Also, it does not generalize to other
types of differences. The time complexity of this algorithm is exponential in the
number of non-zero input bits, and the memory complexity is linear in the number
of non-zero input bits. As a result, it is only usable in practice for sparse input
differences. We were unable to find any other work on this problem in existing
literature.
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5.3 Algorithm with a Linear Time in n

In Sect. 3 and 4, we showed how to calculate the probability of an output difference
using both graph theory and matrix multiplications. We now present a similar
method to calculate the number of possible output differences. First, the general
algorithm is explained. It is applicable to any type of construction based on S-
functions. Then, we illustrate how the matrices for xdp™ can be turned into
matrices for xdc™. This paper is the first to present an algorithm for this problem
with a linear-in-n time complexity. We also extend the results to adp®. Our
strategy is similar to the calculation of the controlled probability P.(i), used in
the cryptanalysis of SHA-1 [12,30].

Graph Representation.

As in Sect. 3.4, we will again construct a graph. Let N be the number of states
|T[i]| that we obtained in Sect. 3.5. For xdp™, we found N = 2. We will now
construct larger subgraphs, where the nodes do not represent states T'[i], but
elements of its power set P(T'[i]). This power set P(7T[i]) contains 2%V elements,
ranging from the empty set & to set of all states {0,1,..., N — 1}. In automata
theory, this technique is known as the subset construction [16, §2.3.5]. It converts
the non-deterministic finite-state automaton (NFA) of Sect. 3.5 into a deterministic
finite-state automaton (DFA).

For every subgraph, the input difference bits «[i] and S[i] are fixed. We then
define exactly one edge for every output bit v[i] from every set in P(T[i]) to the
corresponding set of next states in P(T'[i + 1]). The example in the next section
will clarify this step.

Theorem 2. Let P be the set of all paths that start in {0} at position i = 0
and end in a non-empty set at position i = n. Then, the number of paths |P)|
corresponds to the number of possible output differences.

Proof. All paths P start in {0} at ¢ = 0, and end in a non-empty set at ¢ = n. For
a given output difference bit, there is exactly one edge leaving from a non-empty
set of states to another non-empty set of states. Therefore by construction, every
possible output difference corresponds to exactly one path in P. O

Multiplication of Matrices.

The differential («[i], 8[i]) at bit position ¢ is written as a bit string w[i] + «[i] ||
Bli]. As in Sect. 3.4, we construct the biadjacency matrices of these subgraphs.
They will be of size 2V x 2V, As we are only interested in possible output differ-
ences, these matrices can be reduced to matrices By, of size (28 — 1) x (2 — 1)
by removing the empty set &.

Define 1 x (2¥ — 1) matrix L = [ 1 1 --- 1] and (2¥ — 1) x 1 matrix
C=[1 0 --- 0]7. Similar to (19), we obtain the number of possible output
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differences as

|P| = LBujn_1) - Buft] Bulo)C - (41)

The time complexity of (41) is linear in the word length n.

We note that these matrices can have large dimensions. However, this is often
not a problem in practice, as they are typically very sparse. If we keep track of
only non-zero elements, there is little memory required to store vectors, and fast
algorithms exist for sparse matrix-vector multiplications. Also, the size of the
matrices can be minimized using Sect. 3.5.

5.4 Computing the Number of Output Differences xdc™

In the minimized matrices for xdp™ (given in [23] and again in Appendix A), we
refer to the states corresponding to the first and the second column as S[i] = 0
and S[i] = 1 respectively. Then, the subgraphs for xdc™ can be constructed as in
Fig. 3. Regardless of the value of the output bit, edges leaving from the empty
set @ at ¢ will always arrive at the empty set at ¢« + 1. Assume that the input
differences are afi] = f[i] = 0, and that we are in state S[i] = 1, represented in
Fig. 3 as {1}. Recall that the matrices for xdp™ are

1 0 , 170 1
A600|:0 O:|?A0012|:O 1:|ﬂ (42)

for output differences y[i] = 0 and ~y[i] = 1 respectively. To find out which states
can be reached from state S[i] = 1, we multiply both matrices to the right by

[ 0 1 }T. We obtain

wli]- [ w341 @

We see that we cannot reach a valid next state if 4[i{] = 0, so there is an edge
between {1} at i and @ at i+ 1 for v[i] = 0. If y[i] = 1, both states can be reached.
Therefore, we draw an edge between {1} at ¢ and {0,1} at ¢ + 1 for v[¢i] = 1. The
other edges of Fig. 3 can be derived in a similar way.

Matrices Byg, Bo1, B1o, B11 of (41) can be derived from Fig. 3 as
1 0 1 0 0 O 0 0O
Boo=|0 0 0|, Bgy=Bip=|0 0 0|, Bai=[0 1 1 . (44)
01 1 1 1 2 1 0 1

If the input differences are very sparse or very dense, (41) can be sped up by using
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(o 0) (0,1) and (1,0) (1 1)
CO O T
f
GD N D G %@ D
@D @@ @D

Figure 3 — All possible subgraphs for xdc*. Vertices correspond to
valid sets of states S[¢]. There is one edge for every output difference
bit y[i]. Above each subgraph, the value of («[i], 8[¢]) is given in bold.

the following expressions for the powers of matrices:

1 k-1 k 0 0 0
Bf,=10 o0 01|, By=BY=| 0 0o 0 |,
0o 1 1 ok—1  gk—=1 gk
0 00
BY=|k-11 k| . (45)
1 01

This way, we obtain an algorithm with a time complexity that is linear in the
number of non-zero input bits. As such, our algorithm always outperforms the
naive exponential time algorithm, as well as the exponential time algorithm of [3]
that only works for some input differences.

Let L=[1 1]andC=[1 0 ]T. We illustrate our method by recalculat-
ing the example given in [3]:

xdcT (0x1000010402000000, 0x0000000000000000) (46)
=L-B3 - Bio- By - Bio-Bjy - Bio- By - Bio - Bay - C (47)
= 5880 (48)

5.5 Calculation of adc®

We can also calculate adc®, which is the number of output differences for xor, when
all differences are expressed using addition modulo 2. As the matrices ATUM for
adp® are of dimension 8 x 8, the matrices By of adc® would be of dimension
(28 — 1) x (2% — 1) = 255 x 255. However, we find that only 24 out of 255 states
are accessible. Furthermore, we find that all 24 accessible states are equivalent to
2 states. In the end, we obtain the following 2 x 2 matrices:
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0 0
BOOZ[O 2], 301231023112{1 2} . (49)

These matrices B,,[; are consistent with Theorem 2 of [23]. Although the end
result is simple, this example encompasses many of the techniques presented in
this paper.

6 Conclusion

In Sect. 2, we introduced the concept of an S-function, for which we build a
framework in this paper. In Sect. 3, we analyzed the differential probability xdp™
of addition modulo 2", when differences are expressed using xor. This probability
was derived using graph theory, and calculated using matrix multiplications. We
showed not only how to derive the matrices in an automated way, but also give
an algorithm to minimize their size. The results are consistent with [23]. This
technique was extended to an arbitrary number of inputs and to several related
constructions, including an entire step of SHA-1. A precursor of the methods
in this section was already used for the cryptanalysis of SHA-1 [12,30]. We are
unaware of any other fully systematic and efficient framework for the differential
cryptanalysis of S-functions using xor differences.

Using the proposed framework, we studied the differential probability adp® of
xor when differences are expressed using addition modulo 2" in Sect 4. To the
best of our knowledge, this paper is the first to obtain this result in a constructive
way. We verified that our matrices correspond to those obtained in [23]. As these
techniques can easily be generalized, this paper provides the first known systematic
treatment of the differential cryptanalysis of S-functions using additive differences.

Finally, in Sect. 5, we showed how the number of output differences with non-
zero probability can be calculated. An exponential-in-n algorithm was already
used for this problem in the cryptanalysis of Threefish [3]. As far as we know, this
paper is the first to present an algorithm for this with a time complexity that is
linear in the number of non-zero bits.
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Matrices for xdp ™"

The four distinct matrices A,[; obtained for xdp™ in Sect. 3.4 are given in (50).
The remaining matrices can be derived using Agg1 = Ag1o0 = A1g0 and Agy1 =



A101 = Arro.

3 0 0 1 01 1 0
0 0 0 O 0 2 0 O
Aogoo = 00 0 ol Apor = 00 2 ol
_1 0 0 3_ _0 1 1 0_
(2 0 0 O] [0 0 0 O]
1 0 0 1 01 3 0
Aoi1 = L0 o0 1l A = 03 1 0 (50)
00 0 2 00 0 0

Similarly, we give the four distinct matrices A/ o of Sect. 3.4 in (51). The remain-

2
ing matrices satisfy Afy; = Ab1o = Algo and Afy; = Al = Ao

, 1 0 , 10 1 , 11 0 , 0 0
000:007 001250 1] 011251 ol 111:0 1] (51)

B All Possible Subgraphs for xdp™

All possible subgraphs for xdp™ are given in Fig. 4.

C Computation of xdp" with Multiple Inputs.

In Sect. 3, we showed how to compute the probability xdp ™ («, 3 — ), by introduc-
ing S-functions and using techniques based on graph theory and matrix multiplica-
tions. Similarly, we can also evaluate the probability xdp™ («[i], B[i], C[i], . .. — ~[i])
for multiple inputs. We illustrate this for the simplest case of three inputs. We
follow the same basic steps from Sect. 3 and Sect. 4: construct the S-function,
construct the graph and derive the matrices, minimize the matrices, and multiply
them to compute the probability.
Let us define

S[i] < (eald], e2li]) (52)
Sli+1]  (cai + 1), cali +1]) (53)

Then, the S-function corresponding to the case of three inputs z,y, ¢ and output
z is:

(A2, STi + 11) = F(alil, il ar[i], A%2li], A®y[i], A%li], SE). 0 <i<n .

(54)
Because we are adding three words in binary, the values for the carries ¢;[i] and
cz[i] are both in the set {0,1,2}. The differential («i], B[], ([i]] — ~[i]) at bit
position ¢ is written as a bit string w[i] < «[d] || B[¢] || ¢[¢] || ¥[¢]. Using this S-
function and the corresponding graph, we build the matrices A,,[;. After we apply
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the minimization algorithm (removing inaccessible states and combining equivalent
states) we obtain the following minimized matrices. The remaining matrices satisfy

AOOOl = AOOlO = AOlOO = AlOOOa AOOll = AOlOl =

and Aoi11 = Aio11 = 41101 = Ai110-

4 0 0 2
0 0 8 0
AOOOOZOOOOaAOOOlz
4 0 0 6
0 0 0 O
0 4 0 O
Aor =14 1 ¢
0 3 0 0

OO OO

D Computation of xdp™*

)

1 00
4 0 0
0 0 0
3 0 0
A =

,» Agor1 =

O O o O

o o oo

Given n-bit words z1, A®x, we can calculate A¥z using

o — 21D A%z |
21<—$1'3:(1‘1<<1)—|—£E1,
22(—$2~3:($2<<1)+CL‘2,

Az @2 .

We then define xdp™®(a — ) as

=~ s O O

Hzy: A%z = o, A%z =~}

xdp™3 (a—=79) =

as there are 2™ values for the n-bit word z.
The left shift by one requires one bit of both x1[i] and x5[i] to be stored for
the calculation of the next output bit. For this, we will use d1[i] and da[i]. In
general, shifting to the left by ¢ positions requires the ¢ previous inputs to be
stored. Therefore, (55)—(58) correspond to the following bit level expressions:
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where ¢1[0] = ¢2[0] = dy[0] = d[0] = 0. Let us define
Sli] « (ex[i], eald], da[1], doli]) (69)
Sli+ 1]+ (cai + 1], eafi + 1), di[i + 1], dafi + 1]) . (70)

Then (61)-(68) correspond to the S-function
(A®z[], S[i + 1)) = f(z1[i], A®2[d], S[i]), O0<i<n . (71)

Each of ¢1[i], co[i], d1]i], dz2[i] can be either 0 or 1. After minimizing the 16
states S[i], we obtain only 4 indistinguishable states. Define again 1 X 4 matrix
L=[111 1]and4x1matrix C=[1 0 0 0]7. The differential
(afi] — ~[i]) at bit position i is written as a bit string w[i] <— «[é] || 7[{]. Then
xdp*? is equal to

where
1 0 2 0] (0 1 0 0]
. _1]0o 0 0 2 ., 1]o 100
A00_§1000’ A01_§0000’
0 0 0 0] 0 0 0 0]
[0 0 0 0] [0 0 0 0]
. _1]o 1 0 0 . _1(2 000
A=510 00 0" M=3l00 0 1 (73)
01 0 0] 0 0 2 1]

We now illustrate this calculation by example. Let @ = 0x12492489 and v =
0x3AEBAEAB. Then xdp*®(a — 7) = 271%, whereas xdpT(a,a < 1 — ) =272,
From this example, we see that approximating the probability calculation of mul-
tiplication by a constant using xdp™, can give a result that is completely different
from the actual probability. This motivates the need for the technique that we
present in this section. We note there is no loss in generality when we analyze
xdp*3: the same technique can be automatically applied for xdp*©, where C is
an arbitrary constant.
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Correction

Contrary to the statement of Sect. 2, the formulas in Definition 2 of [11] clarify that
Daum’s w-narrow T-function is in fact the same as an S-function. However, Daum
uses w-narrow T-functions in a completely different context: to solve systems of
equations, and not to calculate differential probabilities. We’d like to point out that
our incorrect statement is only relevant to the literature study that we performed.
It does not invalidate any of the research results in the paper.
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Abstract. The block cipher XTEA, designed by Wheeler and Need-
ham, was published as a technical report in 1997. The cipher was
a result of fixing some weaknesses in the cipher TEA (also designed
by Wheeler and Needham), which was used in Microsoft’s Xbox gam-
ing console. XTEA is a 64-round Feistel cipher with a block size of
64 bits and a key size of 128 bits. In this paper, we present meet-
in-the-middle attacks on twelve variants of the XTEA block cipher,
where each variant consists of 23 rounds. Two of these require only
18 known plaintexts and a computational effort equivalent to testing
about 27 keys, with a success probability of 1 — 271925, Under the
standard (single-key) setting, there is no attack reported on 23 or
more rounds of XTEA, that requires less time and fewer data than
the above. This paper also discusses a variant of the classical meet-
in-the-middle approach. All attacks in this paper are applicable to
XETA as well, a block cipher that has not undergone public analysis
yet. TEA, XTEA and XETA are implemented in the Linux kernel.
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e 1994. The cipher TEA (Tiny Encryption Algorithm) is a 64-round Feistel
cipher that operates on 64-bit blocks and uses a 128-bit key. Designed by
Wheeler and Needham, it was presented at FSE 1994 [24]. Noted for its
simple design, the cipher was subsequently well studied and came under a
number of attacks.

e 1996. Kelsey et al. established that the effective key size of TEA was 126
bits [12]. This result led to an attack on Microsoft’s Xbox gaming console
where TEA was used as a hash function [23].

e 1997. Kelsey, Schneier and Wagner constructed a related-key attack on
TEA with 223 chosen plaintexts and 232 time [13]. Following these results,
TEA was redesigned by Needham and Wheeler to yield Block TEA and
XTEA (eXtended TEA) [18]. While XTEA has the same block size, key size
and number of rounds as TEA, Block TEA caters to variable block sizes for
it applies the XTEA round function for several iterations. Both TEA and
XTEA are implemented in the Linux kernel.

e 1998. To correct weaknesses in Block TEA, Needham and Wheeler designed
Corrected Block TEA or XXTEA, and published it in a technical report [19].
This cipher uses an unbalanced Feistel network and operates on variable-
length messages. The number of rounds is determined by the block size, but
it is at least six. An attack on the full Block TEA is presented in [20], where
some weaknesses in XXTEA are also detailed.

e 2002—2010. A number of cryptanalysis results on the TEA family were
reported in this period. Table 1 lists the attacks on XTEA and their com-
plexities. In [11], it was shown that an ultra-low power implementation of
XTEA might be better suited for low resource environments than AES. Note
that XTEA’s smaller block size also makes it advantageous if an application
requires fewer than 128 bits of data to be encrypted at a time.

The meet-in-the-middle attack. The meet-in-the-middle attack was first intro-
duced by Diffie and Hellman in 1977 [5]. Since then, this technique and its variants
have been successfully used against several block ciphers, including reduced-round
DES [4,6] and the full KeeLoq [10]. Unlike Diffie and Hellman’s original attack, the
meet-in-the-middle attacks in this paper® have negligible memory requirements.
We denote the message space and the key space by M and I respectively. Now
consider two block ciphers A, Bg : M x K — M and let Y = By o Ax, where

3The attack presented in Sect. 5 of this paper can also be seen as a meet-in-the-middle
attack, however the (partial) encryptions and decryptions cannot be performed over all
rounds, as the attacker only searches exhaustively over parts of the key. We therefore
use a technique similar to the partial matching technique of Sasaki and Aoki. This very
recent technique was successfully applied to several hash functions, including MD4 [2],
MD5 [21], HAS-160 [8] and SHA-2 [1].
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Table 1 — Key recovery attacks on XTEA where the time complex-
ities are averages, if explicitly stated in the original paper, average
success probabilities are given as well (KP: known plaintext, CP: cho-
sen plaintext, RK: in a related-key setting)

lAttack ‘ Ref. ‘# Rnds‘ Time ‘ Data ‘ Pr[Success]‘
e Attacks in the standard (single-key) setting

Meet-in-the-middle | This paper 7 295.00 2 KPs 1-—2738
Impossible differential [17] 14 285 202:5 CPs Not given
Differential [9] 15 2120 259 CPs Not given
Meet-in-the-middle | This paper 15 295.00 3 KPs 1—-279
Truncated differential [9] 23 2120-65 | 92055 COpg 0.969
Meet-in-the-middle | This paper 23 2117.00 18 KPs 1271025
e Attacks in a related-key setting

Related-key truncated [14] 27 2115-15 | 920-5 RK_CPs 0.969
differential

Related-key rectangle [15] 34 23194 | 962 RK-CPs Not given
(for 219821 weak keys)

Related-key rectangle [16] 36 | 2'%044 299 RK-CPs 0.63
Related-key rectangle [16] 36 2104.33 | 963-83 RK.CPs 0.80
(for 2M957 weak keys)

Related-key [3] 37 2'%* | 2 RK-CPs | Not given
Related-key (for 2107 3] 51 2128 | 263 RK-CPs Not given
weak keys)

o denotes function composition. In a meet-in-the-middle attack, the adversary
deduces K from a given plaintext-ciphertext pair (p,c), where ¢ = Yk (p), by
solving the equation

Ax(p) = Bi'(c) - (1)

Contribution of this paper. This paper presents meet-in-the-middle attacks
on block ciphers with 7, 15 and 23 rounds of XTEA. Our attacks are under the
standard setting, giving the attacker less freedom than under a related-key setting.
In Table 1, we see that there is no attack on 23 or more rounds of XTEA, that is
better than ours given the standard setting. Furthermore, each of our attacks re-
quires only a few known plaintexts, whereas every attack listed in Table 1 requires
many chosen plaintexts.

The Linux kernel not only includes XTEA, but also a variant called XETA [7].
The cipher XETA resulted from a bug in the C implementation of XTEA, where
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higher precedence was incorrectly given to exclusive-OR over addition in the round
function. From this paper, it is easy to verify that all our results to XTEA directly
apply to XETA as well. This is because our attacks exploit weaknesses in the key
schedule, which is the same for both XTEA and XETA. To the best of our knowl-
edge, this paper is the first to give cryptanalysis results on XETA.

Organization. This paper is organized as follows. Section 2 lists the notation
and convention that we follow. The description of XTEA is provided in Sect. 3.
Our main observation is presented in Sect. 4 and it is developed into an attack on
15-round XTEA in Sect. 5. Here, we also provide other sets of 15 rounds that could
be similarly attacked. Section 6 describes our attack on 23 rounds on XTEA and
provides other sets of 23 rounds that could be attacked in a similar way. Section 7
concludes the paper and provides an interesting open problem. In Appendix A,
we show which countermeasures can be introduced to XTEA to prevent all the
attacks in this paper. The 23-round attack is illustrated in Appendix B.

2 Notation and Convention

The notation used in this paper is listed in Table 2.

Table 2 — Notation

Symbol / Notation | Meaning
| Addition modulo 232
P Exclusive-OR
< Left shift
> Right shift
I Concatenation
|x] maxyez(y < ), Z is the set of integers
LSB Least significant bit
MSB Most significant bit
[¢] Select bit ¢, ¢ = 0 is the LSB
[7...19] Select bits k where j > k >4, k = 0 is the LSB
0k Concatenation of k£ times the string ‘0’

3 Description of XTEA

The block cipher XTEA has block size of 64 bits and key size of 128 bits. It uses a
64-round Feistel network (see Fig. 1). The F-function of the Feistel network (see
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Fig. 2) takes a 32-bit input  and produces a 32-bit output as:
Flrz)=((z<4) @ (x>5))+z . (2)

The 128-bit key K of XTEA is divided into four 32-bit subkeys Ko,..., K5. At
every round, one of the 4 subkeys is selected according to a key schedule. A
constant § = [(v/5 — 1) - 23| is defined, derived from the golden ratio. Two bits
from a different multiple of § are used at every round as the index of the subkey.
The 32-bit subkey «; used in round ¢, where 1 < ¢ < 64, is chosen from the set
{Ky, K1, K2, K3} according to the following rule:

K, if ¢ is odd
ay — 5t[1...0] 1 ?S (0] s (3)
Ks,j12..11) if tis even |
where
t
5t:{2J5, 1<t<64 . (4)

The 64-bit input to round ¢ of XTEA consists of two 32-bit parts L;_; and R;_1
(see Fig. 1). For round 1, the plaintext p is used as input: (Lo || Ro) + p. The
input for round ¢ + 1 is computed recursively from the input to round ¢ as given
by:

Lt < Rt—l s (5)
R, «+ L, H ((5t H Oét) D F(Rt_l)) s (6)

where «; is selected according to (3). For reference, we also list the subkeys used
in every round in Table 3.

The ciphertext ¢ of XTEA is produced by concatenating the two parts obtained
after the 64th round: ¢ < Lgy || Rega.

Finally, we note that in the description above by round we mean a Feistel
round. This is not to be confused with the term cycle used in the original proposal
of XTEA [18]. A cycle is equivalent to two Feistel rounds. Therefore XTEA has
64 rounds or 32 cycles.

Table 3 — Subkeys used in XTEA

Rounds Subkey used
1, 8,9, 10, 17, 18, 20, 25, 30, 33, 40, 41, 49, 50, 57, 60 Ky
3,6, 11, 16, 19, 26, 27, 28, 35, 36, 38, 43, 46, 48, 51, 58, 59 K;
4,5, 13, 14, 21, 24, 29, 34, 37, 44, 45, 53, 54, 56, 61, 64 K,
2,7,12, 15, 22, 23, 31, 32, 39, 42, 47, 52, 55, 62, 63 Ks
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Figure 1 — The Feistel structure of XTEA showing two rounds

Figure 2 — The function F' used in the round function of XTEA

4 Motivational Observation

We begin by observing that the subkey K5 is not used in rounds 6-12. For the
remainder of this section, let K + (Ko, K1, X, K3), where X can be any 32-bit
value, as subkey K5 is irrelevant in the analysis. Given one plaintext-ciphertext
pair (po, co), with each key guess, the attacker checks whether

E& " (pg) = ¢ (7)

where Ef,?"'u) denotes the 7-round (rounds 6-12) encryption using the key K. At
first glance, it may appear that 1 KP is sufficient. However, it is to be noted
that the key space (2?6 keys K) is larger than the ciphertext space (24 ciphertext
blocks).
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We now show that obtaining a second KP (p1,¢;) is sufficient for an attack
with an average time complexity of 29290 7-round encryptions and an average
success probability of 1 — 2733, The attacker iterates over the 2* keys K, where
k = 96. For every candidate key K, (7) is tested using the first KP. If this equality
is satisfied, the second KP is used to check

ES2 () =¢ . 8)

If either (7) or (8) is not satisfied, the candidate key K is incorrect and can be
steved. The approximate number of plaintext-ciphertext pairs that are needed can
also be estimated from Shannon’s unicity distance [22].

We make the reasonable assumption throughout this paper, that the 7-, 15-
and 23-round block ciphers that we consider have perfect confusion and diffusion
properties [22]. If either the plaintext or the key, or both are changed, it is as-
sumed that the corresponding ciphertext will be generated uniformly at random,
independent from previously obtained ciphertexts.

Under this assumption, each of the 64-bit conditions that result from (7) and (8)
is satisfied with probability 2764, All time complexities are stated as the number
of equivalent encryptions of the reduced-round block cipher.

The average success probability can be calculated as follows. The two 64-bit
conditions are simultaneously satisfied with probability 27264 = 27128 We can
therefore eliminate a wrong key with probability 1 — 27128, Assume that key i
is the correct key, where 0 < i < 2F. It will be output by the algorithm if all
previous keys are eliminated. This happens with probability (1 — 27128)?, The
correct key can be located anywhere among the list of 2¥ candidate keys with
equal probability. Therefore, the average success probability is

2k 1
27](: . Z (1 o 27128)1’ _ 21287}6 . (1 o (1 o 27128)2k) ~ 212871@ . (1 .
=0

_ogk—128

)

~1—-2738 (9)

The approximations result from using the first and the second order Taylor
approximations of e* around 0. We now calculate the time complexity of the
attack. For a candidate key K to be determined as wrong, the expected number
of trials is 1+ 2754, This is because for every key, (7) is always checked, and for
2764 keys (8) is checked as well. If the candidate key is correct, two encryptions
are always performed. As the correct key can be located anywhere in the list of
2% candidates keys with equal probability, the average number of encryptions of
the algorithm is

2k 1
7R N (127 2y =27 (1427 (2P - ) 42527 0 (10)
i=0
From Table 3, we obtain several other 7-round block ciphers that can be at-
tacked in a similar way. Table 4 lists all such ciphers. Finally, we note that for
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Table 4 — All 7-round attacks; each attack requires 2 KPs and on
average 29290 7_round encryptions for an average success probability

of 1 —2733
Cipher consisting of XTEA rounds | Unused subkey
6-12 K>
24-30 Ks
42-48 Ky
46-52 K,

n = 0 and n = 1 respectively, one can replace both (7) and (8) with
6..r—1 r...12
B (on) = D¢ (ea) (1)

where r € {6,...,12}, E}?"'E’)(pn) = pn, and D%'”m) denotes (13-r)-round (rounds
r—12) decryption using the key K.* Therefore, what we essentially constructed
above can be viewed as meet-in-the-middle attacks. In (11), the value of r deter-
mines the subkeys that are required for encryption and decryption.

5 Attacks on 15 Rounds of XTEA

The attack described in Sect. 4 on rounds 6-12, can be extended to rounds 6-20 as
follows. First, the attacker performs a meet-in-the-middle attack, where (partial)
encryptions and decryptions cannot be performed over all rounds, the attacker only
exhaustively searches over part of the key. From the remaining rounds, however,
the number of possibilities for the full key is reduced. Only three known plaintexts
(Pn, cn), 0 < n < 2 are required for the attack.

Let us now split a reduced-round XTEA block cipher into outer rounds and
inner rounds. In the outer rounds, one particular subkey is not used, whereas the
inner rounds use only this subkey. The attack is described for rounds 6-20. As
can be seen from Table 3, the outer rounds (6-12) and (15-20) do not involve Ko,
whereas the two inner rounds (13-14) use only K.

By encrypting plaintext py from round 6 to round 12 (i.e., until the beginning
of round 13) and decrypting the corresponding ciphertext c¢o for 6 rounds starting
backwards from round 20, we obtain the subkeys used in the inner rounds. They
are denoted as Ké and K., for inner rounds 13 and 14 respectively. Then, the
attacker checks whether K, = K. ;’. This can be understood from Fig. 1. Therefore,
not the ciphertext values (as in Sect. 4), but the key values “meet in the middle”.

40ne may interpret (11) as encryptions and decryptions with block ciphers of fewer than seven
rounds. Given the assumption that a 7-round block cipher has perfect confusion and diffusion,
separate assumptions are not required for these further reduced block ciphers.
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To the best of our knowledge, such an approach has not been described in previous
literature.

If K, # K, , the candidate key of (Ko, K1, K3) cannot be correct, and the
attacker proceeds to the next candidate key. Otherwise, the candidate key is
extended to (Ko, K1, K3, K3), where Ky = K, = K,. Then, the meet-in-the-
middle attack is performed as described in Sect. 4. That is, a plaintext is encrypted
with candidate keys (Ko, K1, Ko, K3), to check which of the computed ciphertexts
agrees with the actual (corresponding) ciphertext. For the 15-round attack, it is
sufficient to use two additional known plaintexts (p1,c1) and (p2, c2).

The average success probability can be calculated as follows. Using (po,co) a
32-bit condition is obtained when K, = K, is checked. Then, (p1,c1) and (p, c2)
each gives an additional 64-bit condition. A wrong key will pass these tests with
probability® 2732 . (2_64)2 = 27160 Thus, with probability 1 — 27160, a wrong
key is eliminated. Assume that ¢ is the correct key, where 0 < i < 2k Tt will be
output by the algorithm if all previous keys are eliminated. This happens with
probability (1 —27169)?, The correct key can be located anywhere among the list
of 2% candidate keys with equal probability. The average success probability is

2961
9-96 Z (1— 27160)2’ — 916096 (1-(1- 27160)296) ~ 964 (1— 3’264)
i=0
~1-27% (12)

We now calculate the time complexity of the attack. For a candidate key
(Ko, K1, K3) to be determined as wrong, the expected number of trials is 1 +
2732 + 2796 This is because for every candidate key (Ko, K1, K3), the attacker
always checks whether Ké # Kg. For 2732 and 2796 candidate keys, the attacker
encrypts using the second and third known plaintext respectively. If the candidate
key is correct, the equivalent of three encryptions is always performed. As the
correct key can be located anywhere in the list of 296 candidates keys with equal
probability, the average number of (equivalent) encryptions of the algorithm is

2961
27 N (i (14272427 43) =271 (1427 427%) . (29— 1) +3
=0
~ 29500 (13)

Finally, in Table 5, we provide a list of all 15-round block ciphers that can be
attacked with the same complexity.

5If the texts obtained by encrypting po and decrypting co, in the 13 outer rounds,
are uniformly distributed at random, then so are the subkeys K; and K;’. This fact,
explained in Appendix C, is explicitly stated here because the assumption of perfect
confusion and diffusion was made for ciphertexts, and not for subkeys.
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Table 5 — All 15-round attacks; each attack requires 3 KPs and on
average 295-00 computations of the 15 rounds for an average success

probability of 1 — 2765
Cipher consisting of XTEA rounds | Inner rounds | Inner round subkey
6-20 13,14 K>
16-30 22,23 K;
24-38 31,32 Ks
34-48 40,41 Ko
38-52 44,45 K,
42-56 49,50 Ko

6 Attacks on 23 Rounds of XTEA

In this section, we extend the 15-round attack of Sect. 5 to 23 rounds. This 23-
round attack has an average time complexity of 211700 (equivalent) encryptions
and an average success probability of 1 — 271925 Tt requires only 18 known (not
chosen) plaintexts and corresponding ciphertexts. For the same number of rounds,
both the time complexity and the data complexity of our attack are much lower
than those in [9]. Our attack is therefore the best attack on 23-round XTEA so
far in the standard setting, and the only attack requiring such a low number of
plaintexts and corresponding ciphertexts. We note that we have optimized our
attack to have the time complexity as low as possible. It is possible to reduce
the number of known plaintexts even further, but not without increasing the time
complexity of the attack.

The technique used is a meet-in-the-middle attack, similar to the attacks in [4].
As in Sect. 5, the reduced-round XTEA block cipher is split into outer rounds
and inner rounds. In the outer rounds, one subkey is not used. The inner rounds
can contain any of the subkeys. Our attack applies to rounds 16-38 of XTEA.
Rounds 1621 and 33-38 are the outer rounds, and do not involve subkey Kj.
The inner rounds are rounds 22-32. The attack is a sieving attack, as the correct
key is found by eliminating keys that lead to contradictions. The attack is given
in Algorithm 1.

The k-bit key is recovered in two stages. First, the attacker exhaustively
searches over ki bits of the key K and use m known plaintexts to check a one-
bit condition that each of the m plaintexts yield. These k; bits consist of K,
K1, Ko, and the 21 least significant bits of K3. This one-bit condition, tested
in test_keys_1(K), results from the following observation, also illustrated in

Appendix B. We see that, without using K3[31...21], the attacker can calcu-

late Loz[0] « ELS 2D (p)[0], and Ly, [0] < D39 (c)[0]. As Lar[0] = Ly [0]

always holds if the candidate key K is correct, a wrong key can be discarded if
L27[0] # Ly7[0] . Note that only k; bits of the candidate key K are used to test



ATTACKS ON 23 ROUNDS OF XTEA 159

this condition, as the remaining ko bits do not affect this condition.
If none of the m plaintexts cause a key to be discarded, the attacker exhaus-
tively searches over the remaining ko bits of key K in test_keys_2(K). These

ko bits are the 11 most significant bits of K3. In this stage, £ < m of the m plain-

texts are reused. Now, (L7, Ra7) ESG“‘W) (p) and (Lyy, Ry;) Dg8-~38) (©)

are recalculated using the full key K. For efficiency, this calculation is sped up
by using stored values p} and c} for the outer rounds, and encrypting only the
inner rounds. Equations Loy = Ryr and Ll27 = R/27 yield only 63-bit conditions,
as Ly7[0] = Ly;[0] was already tested. If both equations are satisfied for all ¢
plaintexts, the candidate key K is output as the correct key, and the algorithm
halts.

Let us now determine the average time complexity and the average success
probability of Algorithm 1.

The algorithm succeeds if no wrong key K that passes all m + £ tests is en-
countered before the correct key. How efficiently the attacker searches through
these candidate keys K, does not influence the success probability of Algorithm 1.
We therefore assume that the exhaustive search is over 2* keys, and then both
test_keys_1(K) and test_keys_2(K) are performed for each of these keys.

Each of the m plaintexts yields a one-bit condition in test_keys_1(K), sat-
isfied randomly with a probability of 27!. When ¢ < m of these plaintexts are
reused in test_keys_2(K), there is a condition on the 63 remaining bits, satisfied
randomly with a probability of 27%3. A wrong key will be detected if at least one of
the m+-/ tests fail. This eliminates a wrong key with a probability of 1—27™.2763¢,
Assume that i is the correct key, where 0 < i < 2¥. Then, it will be output by the
algorithm if all previous candidate keys lead to contradictions. This happens with
probability (1 —27™ -2763¢)i_ As the correct key can be located anywhere in the
list of 2% candidate keys with equal probability, the average success probability of
the algorithm is

2F—1
2—k . Z (1 _9—m, 2—63€)i — 2'm+63€—k . (1 _ (1 _ 2—77;—63£)2k)
=0
~ 2m+63€—k ) (1 - _2k77n7632) ) (14)

We now calculate the time complexity of the attack. Let i and j (where
0 <i < 2M and 0 < j < 2%2) be parts of the correct key K¢ where i =
(K§, K§, K§,K5[20...0]) and j = K§[31...21]. Any 117-bit key (Ko, K1, K2, K3
[20...0]), tested in test_keys_1(K) before the correct key is encountered, passes
test_keys_1(K) with probability 27™. Therefore, of the ¢ 117-bit keys tested
before the correct key, i - 27 keys are expected to pass test_keys_1(K). For
each of these i - 27™ keys, test_keys_2() is performed 2*2 times. Summarizing,

e the attacker performs an expected i - T7 23-round computations, where T}
is the expected number of 23-round computations for a wrong key under
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test_keys_1Q);

e the attacker additionally performs an expected i - 2~™ - 2k2 . T, 23-round
computations, where T5 is the expected number of 23-round computations
for a wrong key under test_keys_2().

It is easy to see that
m—1
TEy 27 (15)
i=0

To compute Ts, note that test_keys_2() only encrypts the 11 inner rounds again,
and uses stored values for (partial) encryptions and decryptions of the outer rounds.
This is equivalent to 11/23 encryptions of the 23-round block cipher and therefore

N =g
T2:%~Z2 7 (16)
§=0

For the correct (partial) key ¢, the number of steps under test_keys_1() is m. To
determine the remaining part of the correct 128-bit key K¢, the attacker performs
an expected j - T» + (11/23) - £ 23-round computations, where

1. j-T5 is the expected number of 23-round computations, under test_keys_2Q),
for all the j wrong (partial) keys preceding key j;

2. £ is the number of 11-round steps under test_keys_2() for the correct key
j.
As the correct key j can take any value in the set {0, ...,2%2 — 1}, the average
number of 23-round computations corresponding to the correct key ¢, is

2k2 _1

11
2k o To4+—-0) . 1
N ) (1
7=0
As the correct key i can take any value in the set {0,...,2% — 1}, the average

number of 23-round computations in total is

2k1_1 2k2 1
11

o—ki Z i-Ty+m+i-27™. 9k . T, o k2. Z (j.T2+23~£> (18)
i=0 J=0

The derivation of (18) will be more clear from Fig. 3 in Appendix B.

Now, we choose the parameters m and £ for the attack on rounds 16-38.
From (18), we find that we cannot lower the average time complexity below 2117-00.
Therefore, we choose m and ¢ such that we have the lowest number of known
plaintexts, and the highest success probability for this particular time complexity.
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Setting m = ¢ = 18, we find that 18 KPs are sufficient, and that the correspond-
ing success probability using (14) is 1 — 271025, Note that the success probability
of exhaustive search over the full k-bit key using 18 KPs has the same success
probability. This shows that all KPs are optimally used in our attack from an
information theoretic point of view [22]. Note that the number of KPs can still be
lowered further, but then the time complexity must increase. This can be done by
either increasing ¢ (which would make the second stage dominate in the attack),
or by increasing ki (and thus perform the meet-in-the-middle on more than one
bit).® We do not consider such options, as the number of KPs in our attack is
already low enough for a practical attack. The time complexity, however, is still
beyond reach with current hardware. Each of these attacks requires only negligible
memory (about 4 - 64 - 18 = 21217 bits to store (pn,c,) and (pk, c;) values).

As shown in Table 6, a total of 12 variants of the XTEA block cipher can be
attacked, where each variant consists of 23 rounds. For rounds 34-56, the attack
works in exactly the same way as for 16-38, and has the same complexities. The
10 other attacks require that ki = 122: the exhaustive search is now over all but
the 6 most significant bits of one subkey in Algorithm 1, in order to obtain a
condition on one bit to perform the meet-in-the-middle. The middle bit involved
in this condition is given as well in Table 6.

Using (18), we calculate the time complexity for the 10 attacks that use 12
or 13 inner rounds. The lowest possible average time complexity for our attack
strategy is 22290, For this time complexity, the best parameters are m = ¢ = 13.
We then obtain an average success probability of 1 — 27795 using 13 KPs. Again,
each of these attacks requires only negligible memory (about 2170 bits to store
(P, cn) and (pf, cr) values).

7 Conclusions and Open Problems

This paper presented several meet-in-the-middle attacks on 7-, 15- and 23-round
XTEA. The main highlight of our attacks is that they require very few known
plaintexts (not more than 18) as opposed to previously reported attacks (the best
of these attacks requires 22° chosen plaintexts). Furthermore, our attacks use
different approaches - the 7- and 23-round attacks use a straightforward meet-in-
the-middle approach; in the 15-round attacks, the meet-in-the-middle corresponds
to inner round subkeys rather than intermediary text values.

Each of our attacks on 23-round XTEA requires less time (217 23-round
computations) than the previously best-known attack on 23 rounds (21265 23-
round computations) in the standard setting. The time complexities of the 7- and
15-round attacks are also significantly better than exhaustive key search, with each
of these attacks requiring about 2%° time.

6In the attack, one bit in the middle is independent of 11 key bits. Two bits in the
middle are simultaneously independent of fewer than 11 key bits, thereby corresponding
to a larger k.
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Table 6 — All 23-round attacks

Total rnds. | Inner rnds. [ Middle bit | Unused key bits | # Inner rnds. |

16-38 2232 L27[0] K3[31...21] 11 rounds
34-56 40-50 L45[0] Ko[31...21] 11 rounds
6-28 13-24 L19]0 K>[31...26 12 rounds
8-30 12-23 L1g[0 K3[31...26 12 rounds
24-46 31-42 Ls7]0] K3[31...20] 12 rounds
26-48 30-41 L36|0 Ko[31...26 12 rounds
30-52 34-45 L40[0 K>[31...26 12 rounds
42-64 49-60 Ls5[0] Ko[31...26] 12 rounds
20-42 26-38 L32]0 Kq[31...26 13 rounds
38-60 44-56 L5o[0 Ks(31...26 13 rounds
224 820 L14]0] Ko[31...26] 13 rounds
12-34 16-28 L22[0] K1[31...26] 13 rounds

Our attacks apply to XETA as well, a close variant of XTEA that is also imple-
mented in the Linux kernel. We are unaware of any other published cryptanalysis
results on XETA.

An interesting observation from one of the anonymous reviewers, is that there
is also a 15-round attack on rounds 2-16. In this case, subkey K is used con-
secutively in the inner rounds 8, 9 and 10, but not elsewhere. By exhaustively
searching over K7, Ko, K3 and six of the least significant bits of K, we can per-
form the same meet-in-the-middle attack that is described in Sect. 6. However,
this attack has a higher time and data complexity than the other 15-round attacks
of Sect. 5, for a comparable success probability.

When constructing the 23-round attack in Sect. 6, we found that for any num-
ber of inner rounds (where all subkeys can be used) up to 16, there is no corre-
sponding attack on more than 23 rounds. However, if the number of inner rounds
can be increased to 17, this leads to a 29-round attack. All such 29-round attacks
are listed in Table 7. We present the cryptanalysis of these 29-round XTEA block
ciphers as an interesting open problem.
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tan Leurent, Matt Robshaw and Aleksander Wittlin for their useful comments
and suggestions. Part of this work was performed at the Cryptanalysis of Light-
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Table 7 — All reduced-round XTEA block ciphers for which a 29-
round attack consists of 17 inner rounds

’ Total rounds \ Inner rounds \ Subkey containing unused key bits ‘

1139 27 33 Ko
15 43 21-37 K,
29 57 35 51 K,
33 61 4056 K
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A Countermeasures

The attacks in this paper are made possible because a particular subkey K; is
often not used for a large number of rounds. To prevent against the attacks in
this paper, we propose to use each of the subkeys Ky, K1, K5, K3 once every four
rounds, in a random order. This countermeasure does not prevent trivial meet-in-
the-middle attacks on 6 rounds. Note that the subkeys cannot repeat in a cyclic
manner, as we want to avoid the possibility of slide attacks.

B lllustration of the Attack on Rounds 16-38

In Fig. 4, we illustrate the 23-round attack of Sect. 6. The attack is on rounds
16-38, and uses 11 inner rounds (22-32). Grey boxes represent bits that do not
depend on the value of K3[31...21]. In Fig. 3, we illustrate Algorithm 1 from the
point of view of computation of its time complexity.

C Randomness of the Inner-Round Subkeys in the
15-Round Attacks

Here, we show that if the texts obtained by encrypting pg and decrypting cq in
the 13 outer rounds (of a 15-round attack) are uniformly distributed at random,
then so are the subkeys in the inner rounds. As there are only two inner rounds,
the problem may be viewed as follows. In Fig. 1, if L;_1||Rt—1 and Ly ||Reyq are
uniformly distributed at random, then we need to show that a; and a4y are also
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11
2" elements

2117 elements =——

117 bits 11 bits
test_keys_1() test_keys_2()

Figure 3 — Attack on rounds 16-38 using Algorithm 1: the tables
(not stored in memory) denote the two stages of Algorithm 1 and the
shaded 128 bits denote the correct 128-bit key; for a wrong key -,
test_keys_2() is performed 2! times

uniformly distributed at random. Henceforth, the term random means uniformly
distributed at random.

Since F' is a bijection, the output of F' is random given R; ; is random. We
know that modular addition (or subtraction) or exclusive-OR of two random val-
ues results in a random value. Given this, since Ry = Ly and Lyyq||Li—1 is
random, from Fig. 1 we obtain that §; H a; is random. As §; is a constant, «; is
random. By similar arguments, it is easily seen that oy is also random.
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Algorithm 1 Recovering the key of the 23-round XTEA block cipher consisting of
rounds 16-38; an average 2'17-%9 (equivalent) encryptions and 18 KPs are required
for an average success probability of 1 — 271025

Require: m known plaintexts pg...pm—1 and corresponding ciphertexts
co..-.Cm—1 -

Ensure: The output key K (of length k bits) is the correct key with probability
gmH630—k(1 _ ¢=2"""%") "where ¢ is chosen such that £ < m.

1: global p§...p5_1,¢5---Ch

m—1 -
2: function test_key_1(K) do
3: forn«+0...m—1do
" P Egﬁ...Ql)(pn)
5: cr Dgg'”g’g)(cn)
6: (La7, Ro7) + Egz...w) (pt)
7 (Lbz, Ry7) + Dy ()
8: if Lo7[0] # L47[0] then
9: return false
10: return true
11: function test_key_2(K) do
12: forn«+0.../—1do
13: (Lar, Rap) + B0 (pr)
14; (Liyz, Ryr) = D™ (cy)
15: if Loy 7é [/27 or Ror 7é R/27 then
16: return false
17: return true

18: for (Ko, K1, K») < (0...2%2 -1,0...232 ~1,0...2%% — 1) do
19: for K3[20...0]«0...22' — 1 do

20: K+ (Ko,Kl,K27011 H K3[200])T
21: if test_key_1(K) then

22: for K3[31...21]«0...2" — 1 do
23: if test_key 2(K) then

24: output K and halt

TSince the 11 bits K3[31...21] do not affect L27[0] or Lj,[0], one can have any value 8 from the set
{1,..., 21l — 1} in place of 0''. We have used 0! for ease of understanding how the attack works.
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Figure 4 — 23-round attack (rounds 16-38), using 11 inner rounds
(the grey boxes represent bits that do not depend on the value of
K3[31...21])
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Abstract. The block cipher GOST (GOST 28147-89) is a Russian
standard for encryption and message authentication that is included
in OpenSSL 1.0.0. In this paper, we present meet-in-the-middle at-
tacks on several block ciphers, each consisting of 22 or fewer rounds of
GOST. Our 22-round attack on rounds 10-31 requires only 5 known
plaintexts and a computational effort equivalent to testing about 2223
keys for a success probability of 1 —27%. This attack is the best (go-
ing by the number of rounds) low data complexity key-recovery attack
on GOST. A variant of the classical meet-in-the-middle approach is
presented as well.

Keywords: Cryptanalysis, block cipher, meet-in-the-middle attack,
Feistel network, GOST

1 Introduction

The GOST block cipher (GOST 28147-89) is a Russian standard for encryption
and message authentication [7]. From hereon, we will refer to it as “GOST” for
simplicity. It was designed in the erstwhile USSR, and declassified in 1989. This
cipher is used in several applications, including OpenSSL 1.0.0, an open source
toolkit for SSL/TLS [6].

Both GOST and the US standard DES [5] are Feistel networks. GOST has 32
rounds, a block size of 64 bits and a key size of 256 bits. Following its release to
the public, several cryptanalysis results were published. Full-key recovery attacks
on GOST are listed in Table 1. In this table, we omitted attacks that work only
for classes of weak keys, as well as related-key attacks.

*This work was supported in part by the Research Council K.U.Leuven: GOA TENSE, and by
the IAP Program P6/26 BCRYPT of the Belgian State (Belgian Science Policy), and in part by
the European Commission through the ICT program under contract ICT-2007-216676 ECRYPT
II.
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Table 1 — Full-key recovery attacks on GOST; if explicitly stated in
the original paper, success probabilities are given as well (KP: known
plaintext, CP: chosen plaintext, MitM: meet-in-the-middle); attacks
on weak key classes or using related keys are not included
Attack Ref. # Rounds Time Data Pr[Success]
MitM This paper 8 2127.00 3 KPs 1-279
MitM This paper 9,10 2159.00 3 KPs 12738
MitM This paper 11, 12 2191.00 4 KPs 1-2765
Differential [10] 13 Not given | 25" CPs Not given
MitM This paper 13, 14 2223.00 4 KPs 12738
MitM This paper 16 2223.00 5 KPs 1-279
MitM This paper 22 2223.00 5 KPs 1-279
Slide 1] 24 264 ~ 2% KPs | Not given
Slide [1] 30 22587 ~ 25 KPs | Not given
Reflection [4] 30 2224 232 KPs Not given

The meet-in-the-middle attack. Let M and K denote the message space
and the key space, respectively. Let Ax, Bx : M x K — M denote two block
ciphers and let Y = By o Ak, where o denotes function composition. In a meet-
in-the-middle attack, the adversary deduces K from a known plaintext-ciphertext
pair (p, c), where ¢ = Y (p), by solving Ax(p) = Bx'(c).

In this paper, we use a variant of this technique to attack 16 rounds of GOST.
In this approach, the place where the meet-in-the-middle occurs is at the subkeys
instead of at the intermediate texts. This technique will be explained in Sect. 4.
Contribution of this paper. In this paper, we present meet-in-the-middle at-
tacks on block ciphers consisting of up to 22 rounds of GOST. Our aim is to find
out the maximum number of rounds that could be attacked given the following
criteria.

1. The key is recovered with an information theoretically optimal probability
of success indicated by the unicity distance [11].

2. The attack is in a non-related-key setting.

3. The attack works for the full key space (i.e., no classes of weak keys are
used).

4. Very few known plaintext-ciphertext pairs (KPs) are required.

These criteria make the scenario very difficult from the point of view of the attacker.
In Table 1, the 24-round and 30-round slide attacks require almost the entire
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codebook. The 30-round reflection attack also requires a large number of KPs
when compared to our 22-round attack, with the time complexities of both attacks
being identical. Therefore, our 22-round attack may be regarded as the best attack
(going by the number of rounds) to recover the key with a low data complexity.
Biryukov and Wagner show in [2] that the reversal in the order in which the
subkeys are used in the last 8 rounds, helps preclude slide attacks. We find that
this reversal is responsible for many of the attacks (including the 22-round one) in
this paper.
Organization. The paper is organized as follows. The specifications of GOST
algorithm are given in Sect. 2. In Sect. 3, we describe our attacks on block ciphers
consisting of up to 14 rounds of GOST. Sections 4 and 5 describe our attacks on
16 and 22 GOST rounds, respectively. We suggest countermeasures and conclude
the paper in Sect. 6.

2 Description of GOST

First, we introduce the following notation. Addition modulo will be represented
by H and H respectively. We will use & to denote exclusive-OR, < for circular
left shift and || for concatenation.

The block cipher GOST has a block size of 64 bits and a key size of 256 bits.
It is a 32-round Feistel network in which each round uses eight 4 x 4 S-boxes.

The 256-bit key K of GOST is divided into eight 32-bit subkeys Ky,..., K7.
At every round, one of the 8 subkeys is selected according to a simple key schedule.
The 32-bit subkey «; used in round %, where 1 < 7 < 32, is chosen from the set
{Ky,..., K7} according to the following rule:

232

Ki_1mo if 4 1,...,24}
Oéi<—{ 1 mod 8 126{ } (1)

Kso imoas ifi € {25,,32} .

In this paper, we will show that the reversal of the round-key order (in the last 8
rounds), is not a good design choice with respect to meet-in-the-middle attacks.

The 64-bit input to round ¢ of GOST consists of two 32-bit parts L;_; and
R;_1. For round 1, the plaintext p is used as input: (Lo || Ro) « p. The input
for round 7 4+ 1 is computed iteratively from the input to round 4 as given by
L+ Ri—yand R; + L;—1 ® (S(R;—1 Ba;) << 11). We select a; according to (1).
The concatenated output from the 8 S-boxes of round i is denoted by S(x), where
x is split into 4-bit words. The ciphertext ¢ of GOST is produced by concatenating
the two parts obtained after the 32nd round: ¢ < Rsz || L32. A full description of
the GOST block cipher is given in [7].

Note that [7] does not specify the S-boxes. Saarinen [8] has developed an attack
with 232 CPs to recover the S-boxes, assuming the attacker has black box access
to the encryption device, and can specify the key used to encrypt. As his attack
works for any number of rounds, it can be used to turn each of the attacks in this
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paper into an attack with secret S-boxes. First, the S-boxes are recovered using
Saarinen’s attack, and afterwards the secret key is recovered.

3 Attacking up to 14 Rounds of GOST

In this section, we show how to construct an attack on block ciphers consisting
of r rounds of GOST, where 8 < r < 14. In each of these block ciphers, at
least one subkey is not used. Therefore, exhaustive search requires less than 22%°

encryptions on average.
From (1), we obtain ciphers with unused subkey(s). Table 2 lists all these

ciphers.

Table 2 — All r-round reduced block ciphers (8 < r < 14) with
unused subkeys

# Rounds Rounds
8 18-25, 19-26, 2027, 21-28, 22-29, 23-30, 24-31
9 18-26, 19-27, 2028, 21-29, 22-30, 23-31
10 18-27, 19-28, 20-29, 21-30, 22-31
11 18-28, 19-29, 20-30, 21-31
12 18-29, 19-30, 20-31
13 18-30, 19-31
14 18-31

We now evaluate the data and time required for attacking the block ciphers
listed in Table 2. Let us consider a block cipher in which s 32-bit subkeys, 1 <
s < 4, are not used.

Given one plaintext-ciphertext pair (pg, ¢p), with each key guess, the attacker
checks whether

(a...at+r—1)
Ex (po) = co (2)

where Eg?”'aw_l) denotes the r-round (rounds a to a + r — 1) encryption using
the k-bit key K, where k = (256 — 32 - 5). One KP is not sufficient, because the
key space (22°6732'5 keys K) is larger than the ciphertext space (2°¢ ciphertext
blocks). Therefore, the attacker requires more known plaintext-ciphertext pairs
to determine the key K with sufficiently high probability. The number of KPs is
denoted by n.

For every candidate k-bit key K, the attacker tests (2) using the first KP. If
this equality is satisfied, the attacker uses a subsequent KP to check

EE ) = ¢ (3)
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where j is at most n — 1. If one of the n equations (2), (3) is not satisfied, the
candidate key K is incorrect and can be discarded.

Throughout this paper, we use the reasonable assumption that every block
cipher under consideration has perfect confusion and diffusion properties as defined
by Shannon [11]. If either the plaintext or the key, or both are changed, we
assume that the corresponding ciphertext will be generated uniformly at random,
independent from previously obtained ciphertexts.

With this assumption, each of the 64-bit conditions resulting from (2), (3) is
satisfied with probability 274, We now calculate the data and time complexities
for our attacks. All time complexities are stated as the number of equivalent
encryptions of the reduced-round block cipher.

The average success probability can be calculated as follows. The n 64-bit
conditions are simultaneously satisfied with probability 2764, The attacker can
therefore eliminate a wrong key with probability 1 — 2764, Assume that key m
is the correct key, where 0 < m < 2¥. This key will be found by our attack if all
previous keys are eliminated. This happens with probability (1 —27764)™  The
correct key can be located anywhere among the list of 2¥ candidate keys with
equal probability. Therefore, the average success probability is

2k 1
271{3 . Z (1 _ 277’1,-64)777, — 27’7/6471@ . (1 _ (1 _ 2771'64)216) ,

m=0

_gk—n-64

~ 277,4647]6 . (1 _ ) ~1— 2]6777.46471

;o (4)

assuming 2764 ~ 0. The approximations result from using the first and the
second order Taylor approximations of e* around 0. We now calculate the time
complexity of the attack. For a candidate key K to be determined as wrong, the
expected number of trials is 1 +2764 + ... 4 2-("=1)64 The average (equivalent)
number of encryptions of the algorithm is given by:

2k _1
27k Y (m (14278 Ly om0y n)

m=0

1 1-—2n6
T2 1-—2-64

Table 3 gives the average time complexities and the average success probabil-
ities for various values of s (= (256 — k)/32) and n. The approximate number of
plaintext-ciphertext pairs that are needed can also be calculated from Shannon’s
unicity distance [11] as k/64.

We note that (2), (3) can be replaced with Eﬁ?"'til)(pj) = D%""Nﬁ*l)(cj)7

where0 < j<n,t € {a,...,a+r—1}, E;?"'afl)(pj) = p;, and D%"'a“’*l) denotes

(a +r — t)-round (rounds ¢t to a + r — 1) decryption using the key K. Therefore,
the attacks in this section can also be seen as meet-in-the-middle attacks.
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Table 3 — Time complexities and success probabilities of attacks of
Sect. 3 for several values of s and n

s|n| k Average time complexity | Average success probability
1|4/ 224 9223 1—273
2| 41192 2191 1—-2765
31| 3| 160 9159 1—2733
4|3 |128 9127 1—276

4 Attack on 16-Round GOST

In this section, we analyze the block cipher consisting of rounds 17-32 of GOST.
We begin with the observation that K is used consecutively in rounds 24 and 25.

Our attack assumes that the S-boxes are bijective. Note, however, that a
similar attack works for non-bijective S-boxes, but then the computations of the
time complexity and success probability become more involved.

Let K = (Ko, K1, K2, K3, K4, K5, Kg, X), where X is not relevant to the anal-
ysis because the attacker exhaustively searches over all subkeys except K7. For
every candidate key K, the attacker computes E§(17"'23) (po), given a plaintext-
ciphertext pair (po,co), and gets Log and Rss. Similarly, the attacker computes
Dg6"'32) (co) and gets Los and Ras. Using agy = S™H((Las @ Lag) >> 11) B Ras
and ags = STH((Ras @ Ra3) >> 11) B Las, the subkeys used in rounds 24 and 25
are obtained. If they are equal (for a wrong candidate key K, this happens with
probability 2732),3 the attacker sets K7 ¢ agq = auos.

Then, using n — 1 other plaintext-ciphertext pairs (pj,¢;), 1 <j <n—1, the
attacker tests if E&W”'BQ) (p;j) = ¢; with the value found for K7. A wrong key will
pass these tests with probability 2732 - (2_64)n_1 = 2732-(n=1):64 " Thys, with
probability 1 —2732=("=1):64 "3 wrong key is eliminated. Using a similar reasoning
as in Sect. 3, we obtain the average success probability:

9224 1
9—224 Z (1- 2—32—(n—1)-64)m — 932+(n—1)64-224 (1—(1-— 2—32—(n—1)-64)2224)

m=0

~ 232+(n71)4647224 . (1 _ 672224*32*("*1)-64)

, (6)

where the approximations hold when n > 5. We now calculate the time complexity
of the attack. For a candidate key K to be determined as wrong, the expected

~ 1 — 9224-32—(n—1)-64—1

3If the texts obtained by encrypting po and decrypting co, in the 13 outer rounds, are
distributed uniformly at random, then so are the subkeys in rounds 24 and 25.
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number of trials is 1 4+ 2732 4 2732-64 1 4 9-32-(n=2):64  T}jg is because for
every candidate key K, the attacker always checks whether the subkeys used in
rounds 24 and 25 agree. For 2732 candidate keys, the attacker uses the second
known plaintext, for 27 the attacker uses the third known plaintext, and so on.
If the candidate key is correct, the attacker always performs n encryptions. As
the correct key can be located anywhere in the list of 2224 candidates keys with
equal probability, the average number of 16-round computations is

9224 4
9—224 | Z (m (142732 po26d +2—32—(n—2)-64) + n)
m=0
1
=3 (142732 42732764 4 9=32-(n=2)64y (9224 _ 1) 4 p (7)

65

Substituting n = 5 in (6) and (7), the average success probability is 1 —27° and

the average number of 16-round computations is 2223-90,

5 Attack on 22-Round GOST

From (1), we observe that the subkey Ky is used only once in the block cipher
consisting of rounds 10-31 of GOST. Therefore, here the attacker first checks
for the equality of Ris and R}s. These are obtained by respectively computing
E%9(pg) and DLV (¢), where K = (X, Ky, Ky, K3, Ky, K5, Ko, K7). As
subkey K is not necessary to perform these partial encryptions and decryptions,
X can be any 32-bit value.

If Rig = R} (this happens with probability 2732), the corresponding value of
Ky (= ai7) is obtained using:

17 = ST ((Ri7 @ Lig) >> 11) B Ry - (8)

The attacker uses n — 1 KPs (pj, ¢;) subsequently to check Ego'”gl)(pj) =¢j

with the value obtained for K. For every j, where j is at most n— 1, this equation
is satisfied with probability 2764,

Using the same formulas as in Sect. 4, we find an average time complexity of
2223.00 for a success probability of 1 — 27%. A similar attack can be mounted
on other reduced-round block ciphers, each with less than 22 GOST rounds (e.g.,
rounds 11-31), where a particular subkey is used only once. Again, attacks similar
to those in this section can be applied to the respective block ciphers even if the
S-boxes are not bijective.

6 Conclusions and Open Problems

This paper presented several meet-in-the-middle attacks on GOST reduced to up
to 22 rounds. To the best of our knowledge, the 22-round attack is the best attack
(going by the number of rounds) to recover the key with very few known plaintexts.
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Our attacks use different approaches — attacks on 14 or fewer rounds use a
straightforward meet-in-the-middle approach and so does the 22-round attack; in
the 16-round attacks, the meet-in-the-middle corresponds to inner round subkeys
rather than intermediary text values. Our attacks work in a non-related-key set-
ting.

The time complexity of both the 16-round and 22-round attacks is
is required in these attacks that the S-boxes are bijective, but similar attacks can
be constructed as well if this is not the case.

An interesting open problem would be extending our attacks to more rounds
using other approaches to the meet-in-the-middle technique; for example, similar
to those of [3].

2223.00- It
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1 Introduction

Let h: D — R be a function, where both the domain D and the range R are finite
sets. Denote |D| by d and |R| by r. If d > r, h is referred to as a hash function.
Although strictly not required, D is finite for commonly used hash functions; e.g.
for SHA-1, D consists of all strings of length at most 264 — 1 bits [§].

Any pair (z,y) where z,y € D for which x # y and h(z) = h(y), is denoted
as a collision for hash function h. A possibly trivial collision is a pair (z,y) where
x,y € D for which h(z) = h(y). That is, unlike for a collision, it is allowed that
x = y. Among other requirements [14], a cryptographic hash function should be
collision resistant, i.e. it should be computationally infeasible to find a collision.
In this paper, a “hash function” does not necessarily refer to a “cryptographic
hash function.” For any choice of h, a generic birthday attack can be used to find
a collision.

In a birthday attack, points z1,...,z4 are picked from D. For ¢ = 1,...,q,
we compute y; = h(x;). We say that the birthday attack is successful, if we find
h(z;) = h(x;), where 1 < i < j < ¢q. We refer to ¢ as the number of trials of the
birthday attack.

There are several variants of the birthday attack, that differ in the way that
the points x1,...,z4 are chosen. In their analysis [1,2], Bellare and Kohno only
consider the case where the domain points are chosen independently and uniformly
at random from all m-bit strings (therefore |D| = 2™). Yuval [26] instead suggests
using g minor modifications of a message, in such a way that all messages are
meaningful. Using distinguished points, Quisquater and Delescaille [18] showed
that collisions for meaningful messages can also be found with negligible memory
requirements, i.e. without storing all (x;, h(z;)) for ¢ = 1,...,q. An efficient
parallel implementation of their algorithm was proposed by Van Oorschot and
Wiener [22].

For most applications, only a small subset of all m-bit strings are meaningful.
If, for example, the messages consist of only ASCII characters, a necessary (but
not sufficient) requirement is that the most significant bit of every character is
Zero.

Let Cr(q) be the probability that the birthday attack finds a possibly trivial
collision for h after ¢ trials. If for every domain point, the corresponding range
point of h is chosen uniformly and independently at random from all » range points,
we refer to h as a random function. The success probability of the birthday attack
for a random function is denoted as C} (q).

Bellare and Kohno [2] point out that if i is a random function, this does not
necessarily mean that h(x) is uniformly distributed in R. In order to have such
a uniform distribution in R, every range point must have the same fraction of
preimages under the hash function. We refer to such a hash function as a regular
function. This can be defined more formally as follows.

Definition 1 (Balance and Regularity). Let h : D — R be a hash function with
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domain D of size d and range R = {R1, R, ..., R} of size r. For h to be a hash
function, we must have d > r. For 1 < i <7, d; = |h"!(R;)| denotes the size of
the preimage of R; under h. The balance of h is then defined as

d2
h) =1 . 1
u(h) Ogr(d§+d§+...+dz) (1)

A hash function is regular iff p(h) =1 (that is, it V1 < i <r:d; =d/r) [2, §5].

If h is a regular function, the success probability of the birthday attack is
denoted by C;°®(q). Bellare and Kohno calculate* that C}(q) > (8/5) - C}%(q), if
d = 2r > 10. Therefore, they conclude that “regular functions fare better than
random functions [against the birthday attack].”

We recall that their reasoning assumes that the attacker chooses the messages
uniformly at random from D. In the following sections, we investigate the case
where the attacker limits the choice of the domain points to subsets of D. We prove
that it is not possible to construct a hash function that is regular with respect to
only a small fraction of subsets of the domain. For this, we introduce the concepts
of subset regularity and linear subset regularity.

Bellare and Kohno pointed out in their analysis that there is only a small
difference between regular and random functions in their resistance against the
birthday attack. For random functions, the success probability of the birthday
attack does not depend on how the attacker chooses the domain points.

NIST is currently holding a competition in search for a new hash function
standard [15]. Our result may be relevant to the analysis of statistical properties
of the hash functions in this competition.

Organization. This paper is organized as follows. In Sect. 2, we describe the
birthday problem and its relation to the birthday attack. Section 3 provides a
brief overview of some works that employ the notion of regularity. In Sect. 4, we
compute the ratio of regular functions to all functions with the same domain and
range. Our notions of subset regularity and linear subset regularity are introduced
in Sects. 5 and 6, respectively. The impact of our observations on the birthday
attack is discussed in Sect. 7, where we show that the success probability of the
birthday attack against a regular hash function can be made arbitrarily close to
that of a random hash function (for the same number of trials). In Sect. 8, we
describe the relation of regularity to the dictionary problem in computer science.

We propose in Sect. 9 that, to analyze the complexity of the birthday attack
for commonly used hash functions, we model hash functions as random functions
instead of as regular functions. A proof that random functions do not suffer from
any of the problems in this paper is given as well. We conclude in Sect. 10.

We show in Appendix A how the construction of a 3-to-1 bit linear subset
regular hash function fails. In Appendix B, we calculate the inverse of some

4In this proof, the values from the domain are randomly chosen, but with replacement. The
replacement can result in a possibly trivial collision with a collision in the domain. The authors
show in [2, §7.2] that the higher success probability is not due to the possibility of such collisions.
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matrices that we use in Sect. 6.

2 The Birthday Problem

Assume that there are N people in one room. How large must N be, in order to
have a probability of at least 1/2 that two people share the same birthday? It
is assumed that birthdays are independently and uniformly distributed over the
365 days of the year (leap years are ignored). This is the birthday problem (see
Feller [9, §2.3]), which dates back to von Mises [23]. The answer to the problem
is N > 23.

Bloom showed that the probability that two people share the same birthday,
is the lowest when birthdays are uniformly distributed [3]. Nunnikhoven [16]
analyzed the birthday problem for nonuniform birth frequencies.

Based on the mathematics of the birthday problem, Yuval proposed the birth-
day attack for hash functions [26]. In the attack, a large number of messages are
generated, until two messages are found that result in the same hash value. The
attack complexity depends on the distribution of the hash values. If the hash
values are uniformly distributed, the analysis of the original birthday problem ap-
plies. In case of a nonuniform distribution, collision probabilities were calculated
by Cachin [5, §3.2.5], as well as Bellare and Kohno [2].

In this paper, we point out that the distribution of the hash values not only
depends on the hash function, but also on how the attacker chooses the input
messages. This is different from the birthday problem, where the probability
distribution of the birthdays is fixed in advance (to have a uniform distribution).
In the following sections, we investigate the impact of the attacker’s choice of the
messages.

3 Balance and Regularity in Existing Literature

The results of [2] not only remained unchallenged for over six years, but were
also often cited in papers on cryptographic theory, in cryptanalysis papers and in
textbooks. In this section, we give a brief overview of some of the most notable
results.

Since Bellare and Kohno introduced their balance measure p(h) in [1,2] (de-
fined in (1)), this measure has been applied to several hash functions. Already
in their original paper, the balance measures of truncated variants of SHA-1 were
analyzed. Later, Yoshida et al. calculated the balance of a reduced version of
MAME [25]. @degéard and Gligoroski recently computed the balance measures of
reduced versions of EDON-R [17].

In each of these papers, hash function balances are calculated. However, the
results show that not a single one of the hash functions variants under consideration
is regular, and the balance measure p(h) seems to decrease if the number of output
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bits of A is increased. The balance of the actual (untruncated) hash functions is
never calculated, because this would be computationally infeasible. Because of this
difficulty, we question the applicability of the balance measure to analyze practical
hash functions.

The notions of balance and regularity also appear in several textbooks. In [11],
Goldwasser and Bellare state that “If h is not regular, it turns out the [birthday]
attack succeeds even faster, telling us that we ought to design hash functions to
be as “close” to regular as possible.” In this paper, we explain why we counter this
design criterion.

Buchmann’s book [4] states: “We assume that strings from [the domain] can be
chosen such that the distribution on the corresponding hash values is the uniform
distribution.” However, it is the attacker who can freely determine how strings are
chosen from the domain. In this paper, we show that there always exists a way for
the attacker to restrict the domain so that the resulting function is not regular.

In the first edition of his book [19], Stinson describes the birthday attack under
the assumption that the hash function is regular. This assumption is dropped in
the second edition [20], in favor of random oracles [10].

In [13], Joux refers to [1] for a more precise analysis of collisions in hash func-
tions for the unbalanced case. Bellare and Kohno provide bounds for this unbal-
anced case [2], which they refer to as “the generalized birthday problem”. The
reader should not confuse this with the generalized birthday problem that Wagner
studied earlier [24].

4 Fraction of Regular Functions

We begin with the following lemmata.
Lemma 1. The total number of hash functions |h| is given by r<.

Proof. Each of the d elements of the domain, can have r possible range points.
This results in a total of ¢ combinations. O

Lemma 2. The total number of functions |h*®8| that are reqular is given by

0 if rtd . @)

s — {d!/«d/r)!)'“ ifrid,
Proof. For a function to be regular, each range point must have the same number
of preimages under the function. This is achieved if and only if 7 | d. Given that
the function is regular, the first range point that we consider has one of C(d,d/r)
possible sets of d/r preimages mapping to it. Here, C(u,v) denotes the quantity
uwl/(v! - (u —v)!). Any domain point in the set that maps to this range point
cannot map to any other range point; otherwise the mappings do not constitute a
function. Therefore, the second range point that we consider will have one of only
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C(d —d/r,d/r) possible sets of d/r preimages mapping to it. Similarly, the i-th
range point will have one of C(d— (i — 1) -d/r,d/r) sets of domain points mapping
to it. In total, therefore, we have

EC(d— (i—1)-d/r,d/r) = @ (3)

functions that are regular. Figure 1 illustrates the above arguments with an ex-
ample. O

—

D R

Figure 1 — In this example, d = 9 and r = 3; the shaded area
represents one of the C(9,3) possible sets of 3 domain points that
can map to the range point R; given that the function is regular; for
Ry there are only C(6,3) sets

Theorem 1. Assume r | d. The probability that a random function is also a
reqular function, is given by

‘hreg| ~ 27(r/2)~log2(27rd/r) ] (4)
||
Proof. Stirling’s approximation:
1 z
log, (2!) = 3 log, (272) + zlog, (g) . (5)

Using Lemma 1 and Lemma 2, we obtain:

log; ('hm') — log, (|1"*%]) — log (|A)
= log, (d!/(g!)r) —log, (rd)

= log, (d!) — rlog, (d!) — dlog,(r)
T
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Q

1 d
B log, (2md) 4 dlog, (e)
T d
~3 log, (2nd/7) — dlog, <7‘e>

— dlogy(r)

1
=3 log, (2md) — glogQ (2md/T)
r 2nd
) logy (T> . (6)

O

Q

Let us consider a random hash function with d = 26! and r = 260, Accordin
to Theorem 1, the probability® that this function is a regular function, is 92"
We note that it is therefore extremely unlikely that a hash function chosen uni-
formly at random from the set of 7¢ hash functions is regular. This relates to the
observations made in the literature study of Sect. 3, where we discuss papers that
analyze the balance of several hash function variants.

5 Subset Regularity

First, we recall a rather obvious point from [2]. Assume that for an n-bit hash
function h, we restrict the input of h to messages of at most m bits. Let g be
a hash function, such that the domain is restricted to at most m’ bits, where
m’ > m. Suppose g(x) = h(x), ¥V z:|z| < m. Then, a collision for h will also be
a collision for g. If g is SHA-1, then m’ can be at most 26 — 1. A collision for,
say, h : {0,1}1%1 — {0,1}1%0 is a collision for SHA-1 for any m’ > 161. In other
words, as separately stated by Bellare and Kohno [2, §7.2],

“[Afn adversary attacking a hash function with a very large domain D might re-
strict its choices of domain elements to some smaller subset of D.”

One possibility is to restrict the domain elements to sets of size 2¢, where a € N
and 2% > r. In this paper, we assume that the attacker chooses to make such a
restriction. We also assume that |D| is even, and that the size of the restricted
domain is always half the size of D.

For certain applications, the domain D must be restricted to a smaller subset.
For example, if a message consists of ASCII characters, the most significant bit of
every character must be zero.

5Although Stirling’s approximation (5) is used for a small value of z, namely d/r = 2, all
digits of the calculated probability using the approximation are correct.
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Definition 2 (Subset regularity). Let b : D — R be a hash function with domain
D and range R = {R1, R, ..., R} of size d and r respectively. Assuming |D]| is
even, the attacker can restrict the elements of D to a subset S such that |S| = |D|/2.
For 1 <i<r,s; = |h~1(R;) € S| denotes the size of the preimage of R; under h,
when the domain is restricted to S. We say that a hash function is subset reqular
with respect to S, if it is not only regular, but also V1 <i <r:s; =d/(2r). That
is, it must also be regular when the domain is restricted to subset S. We impose
the condition d > 2r, to ensure that |S| > |R|.

We now introduce the following lemma.

Lemma 3. The total number of hash functions |h*°8| that are subset regular with
respect to S, is given by
2 .
(Bsves| — ((@/2Y((d/2r))7) z'f 2r|d )
0 if 2rtd .

Proof. Suppose that |D| is even. Let the domain D be partitioned into two equally-
sized sets Dy and Ds, and consider only domain elements in one of these sets (D,
or Dy). Then every range point can have the same number of preimages, if and
only if 2r | d. This also implies 7 | d, which is required for the regularity criterion
on the entire domain. The reasoning now is exactly the same as for Lemma 2, but
with d replaced by d/2 as the regularity criterion holds on the smaller domain as
well. Because the subset regularity criterion has to hold on the other subset of the
domain, we square the entire expression. If | D| is not even, it is not possible that
h is subset regular with respect to S. O

Theorem 2. If 2r | d, the probability that a regular function chosen uniformly at
random is also subset reqular with respect to S, is given by

hsres
|hreg|| ~ 2(—r/2)~10g2(7rd/2r) ) (8)

Proof. Using Lemma 2 and Lemma 3, we obtain:

‘ heres ‘ sreg reg
log, = logy (|h™°8[) — log, (|h™#|)

]
= log, ((%'/(2%'))2) — log, (dl/(g!)")

= 2log, (g') — 2rlog, (;') — log, (d!) + rlog, (f')

~ log, (7d) + dlog, (2d ) —rlog, (md/r) — dlog, (2d )

€ re

1 d
~3 log, (27d) — dlog, (> + glog2 (2md/r)
e
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d
+ dlog, ()
re
1 wd r 2r r wd

O

Assume that for a regular hash function, d = 2162 and r = 2160, The attacker
decides to restrict the choice of the domain points to a smaller subset, consisting of
2161 elements. According to Theorem 2, the probability® that a randomly chosen
regular function is also subset regular with respect to .S, is 927,

This leads us to conclude that if h is a regular function chosen uniformly
at random (from all regular functions with the same domain and range), the
probability that h is also a regular function for a particular subset is negligible.

6 Linear Subset Regularity

In Sect. 5, we showed that a randomly chosen regular hash function is also subset
regular with respect to S with a probability of almost zero. Our calculations
assumed that r was at least reasonably large, otherwise finding collisions using the
birthday attack becomes feasible in practice.

One might therefore propose the design of a hash function h that is not only
regular, but also subset regular with respect to arbitrary subsets. We now prove
that no such h exists, by showing that a hash function can be subset regular with
respect to only a negligible fraction of all C(d, d/2) possible subsets. In order to
do this, we first introduce the definition of linear subset regularity.

Definition 3 (Linear subset regularity). Let h: D — R be a hash function with
d = |D| = 2™ and r = |R|. Every element of D consists of m bits, which we
label from xg to x,,—1, where x( represents the least significant bit. The attacker
can restrict the elements of D to a smaller subset, including only domain points
that satisfy am—1Tm—1 D @Gm—2Tm—2 & ... & agro = 0, where a; € {0,1}. We can
therefore construct 2 — 1 subsets of D, for all choices of a;, 0 < i < m, except
the all-zero case. We impose d > 2r, to ensure that each of these subdomains is
larger than the range R. We say that a hash function is linear subset reqular, if it
is not only regular for the domain D, but also for each of the 2™ — 1 subsets of
the domain that we defined.

We first prove that there are no m-to-1 bit hash functions that are linear subset
regular. Using this, we prove that there are also no m-to-n bit hash functions that
are linear subset regular.

SThe approximation given by (8) results in 2_2160’4, but we have calculated this value more
accurately by including additional terms in Stirling’s approximation (5).
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Theorem 3. There does not exist an m-to-1 bit hash function that is linear subset
regular.

Proof. A necessary condition for a 3-to-1 bit hash function to be linear subset
regular, is that exactly four hash values are 0, and that for every linear subset
exactly two hash values are 0. This condition can be described by the following
system of linear equations:

11111111 h(000) 4
10101010 h(001) 2
11001100 h(010) 2
10011001 ho11) | | 2 10)
11110000 h(100) | ~ | 2
10100101 h(101) 2
11000011 h(110) 2
10010 1 1 0]/[h(11) 2 ]

We find that there is only one solution, namely h(000) = h(001) = ... =
h(111) = 1/2. As none of these range points are in the set {0,1}, we conclude
that there does not exist a 3-to-1 bit hash function that is linear subset regular.
In Appendix A, we show how the explicit construction of a 3-to-1 bit linear subset
regular hash function fails.

Let the 8 x 8 matrix in (10) be denoted as Ag. By A4 we denote the matrix
that results when the logical negation operator is applied to every element of Ag.
Matrices A4 can then be constructed as follows:

Ay =11], (11)

Ad—[Ad/Q Ad/Q}, for 1 <log, (d) e N . (12)
Age Adgj2

Every row of Ay corresponds to a subset of the domain defined by the linear
expression am—1%m—1 B Gm—2Tm—2 D ... B apxo, where a; € {0,1}, 0 < i < m
indicates if a linear term is included or not, and x( refers to the least significant bit.
By definition, we assume that a linear expression containing zero terms corresponds
to the regularity condition. The values of a; are different for every row, and A, is
constructed such that the top d/2 rows have a,,—1 = 0 and the bottom d/2 rows
have a,,—1 = 1.

In order to extend our result from 3-to-1 bit hash functions to m-to-1 bit hash
functions, we must prove that the following system of equations has no solutions
that consist of only elements in {0, 1}:

d ]T

AdX:Z[Q 11 ...1 (13)

By counting the number of ones in every row of A4, we make the observation
that X = [ 11 -1 ]T /2 is always a valid solution. This is the only solution
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if Ag is invertible. In Appendix B, we prove that matrices Ay are invertible, by
showing their relation to Hadamard matrices. As none of the elements of X are
in the set {0,1}, there are no m-to-1 bit hash functions that are linear subset
regular. O

We now show that if no m-to-1 bit linear subset regular hash functions exist,
there exist no m-to-n bit linear subset regular hash functions.

Theorem 4. There exists no m-to-n bit hash function that is linear subset reqular.

Proof. We show by induction on n. Let P(n) denote the proposition:
There exists no m-to-n bit hash function that is linear subset regular.

The base case P(1) is true by Theorem 3. Let P(i) be true for some i < n.
Then, we derive the truth table of Table 1.

Table 1 — Truth table for an m-to-i bit hash function h; a;, € {0,1}
vVjed{0,...,2" -1} and £ € {0,...,i— 1}

x h(z)

Tm—-1 Tm-2 - T Q1 Q2 a o)
0 0 e 0 0,51 Qo2 E Q0,0
0 0 R | Q1 i—1 Q1 i—2 e 10
0 1 s 1 0‘27"—171@71 Ck2m—1,17i,2 s Ck2m—171’0
1 0 e 0 0‘2*”—1,2‘—1 042711—177;_2 e 0427”_170
1 0 e 1 042m*1+1,z'—1 Oé2m—1+17i_2 e a2m71+170
1 1 s 1 0[2771,—1,2*_1 Ck2m—177;_2 e 042711,—170

Now, if a hash function is linear subset regular then it is
e regular, and

e subset regular under all linear conditions, each of which partitions the do-
main into two equally-sized sets.

Therefore, if a hash function is not linear subset regular then it is either (¢) not
regular or (é¢) not subset regular with respect to at least one linear condition.
Given case (#), without loss of generality, let us assume that subset regularity
does not hold for x,,_1 = 0. Then, in the truth table in Table 1, at least one of
the 2m~1 i-bit outputs corresponding to z,,_1 = 0 appears more than the expected
2m=1 /2t = 2m=i=1 times. Again, without loss of generality, let the output {0}°
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appear t > 2™~ times (i.e., say, aj, =0V j € {0,...,t—1}and ¢ € {0,...,i—1}
in Table 1). Then, if we append one bit to each of the t output strings {0}, one
of the strings {0}?]|0 and {0}*||1 appears strictly more than 2m~!/2i+1 = gm=i=2
times. Since {0}%]|0 and {0}?]|1 should each appear exactly 2™~"~2 times when
the m-to-(¢ + 1) bit hash function is subset regular under the linear condition
Tm—1 = 0, P(i+ 1) is true when P(3) is true. Given case (), following a similar
line of reasoning, replacing 2! with 2™ and recalculating the formulas, we obtain
that P(i) = P(i+1). Therefore, by the principle of mathematical induction, P(n)
is true. O

Let us again consider a regular hash function with d = 2162 and r = 2169, If we
require this function to be linear subset regular as well, the function must be subset
regular for a fraction of d — 1 out of all C(d,d/2) possible subsets consisting of
half of the domain elements. For d = 212, this fraction evaluates to about 22",
Therefore, by imposing subset regularity for only an extremely small fraction of the
possible subsets that we consider, we prove that no linear subset regular functions
exist.

In the previous section, we showed that the fraction of subset regular hash
functions was negligible. In this section, we obtained an even stronger result:
there does not exist a hash function that is regular for more than a negligibly
small fraction of subsets of the domain.

Therefore, in the birthday attack, the attacker can always restrict the domain
in such a way that the resulting hash function is not regular. This counters Bellare
and Kohno’s interpretation of why regular functions fare better than random func-
tions against the birthday attack. However, we do not dispute the mathematics
of their analysis.

7 Impact on the Birthday Attack

In the previous sections, we showed how unlikely it is that a hash function is
regular, if the attacker restricts the inputs to a particular subset. We now use
this observation to increase the success probability of the birthday attack against
a regular hash function (for the same number of trials), compared to Bellare and
Kohno’s analysis.

Bellare and Kohno [2, §7.2] see a possibility for the attacker to restrict the
domain to a smaller subset of d = 2r > 10 elements, and calculate that in this
case, C(q) > (8/5)-C}°®(q). From this, they conclude that regular hash functions
fare better than random hash functions against the birthday attack. However,
Bellare and Kohno’s analysis assumes that the attacker restricts the domain in
such a way, that D consists of all strings of length log,(r) 4+ 1 bits.

As Bellare and Kohno already pointed out, C}*®(q) approaches C}(q) if the
length of the input strings increases. Therefore, to increase the success probability
of the birthday attack against a regular hash function with d = 2r (for the same
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number of trials ¢), the attacker can consider long input messages. The attacker
will then restrict these long input messages to a set of d = 2r elements, and
perform the birthday attack. Therefore, by increasing the length of the input
messages (but still restricting the domain points in the birthday attack to d = 2r
elements), the success probability of the birthday attack against a regular hash
function can be made arbitrarily close to that of a random hash function, for the
same number of trials g. This contradicts Proposition 7.4 of [2], which states that
if |D| = 2|R| > 10, then C§(q) > (8/5)-C}°®(q) for all ¢ satisfying 2 < ¢ < 0.1-r1/2,

8 Related Work

In 1956, Dumey introduced the concept of (non-cryptographic) hashing [7]. It was
proposed as a solution to the dictionary problem. In the dictionary problem, a
sequence of operations INSERT (k, x), DELETE (k) and LOOKUP(k) are given. They
are used to respectively insert, delete and look up key-value pairs (k, ), and are
performed on an initially empty table of key-value pairs. The goal is to minimize
the time and memory used by these operations.

Let b’ : D" — R’ be a hash function, where both the domain |D’| = d’ and the
range |R’| = v’ are finite, and d’ > r’. The construction known as chained hashing
is then described as follows. We initialize an array A[1l...r’], and let A[i] contain
a linked list of all key-value pairs (k,x) for which h'(k) = .

Assume that r’ | d’. For chained hashing, A’ is ideally chosen such that every
Ali] contains the same number of key-value pairs. This is related to the notion
of a regular hash function by Bellare and Kohno, where every hash value has the
same number of preimages in the domain D’. If D’ is the set of all keys that are
added to the table, then the number of key-value pairs that have to be read when
either of the three operations are performed, is at most d’/r’. If there exists an
Ali] with fewer than d’/r’ elements, then there also exists an A[j] where i # j
with more than d’/r’ elements. Therefore, regular hash functions obtain the best
performance in the worst-case scenario.

Doing a rigorous analysis of chained hashing is difficult, because the calcu-
lations strongly depend on sequence of keys k. For example, by the pigeonhole
principle there always exists a sequence of keys k that all map to the same hash
value h/(k). Sometimes assumptions are placed on the sequence of keys k, but
these may be very difficult (or even impossible) to guarantee in practice. This is
also evident from the analysis in our paper.

As a novel solution to the dictionary problem, we mention the universal classes
of hash functions proposed by Carter and Wegman [6]. In their paper, it is pro-
posed that A’ is chosen uniformly at random, but not from the set of all possible
functions. The class of hash functions H' is chosen in such a way, that the average
performance (for all A’ € H') for the worst case input is bounded.

More formally, let ' : D’ — R’ be a hash function, where both the domain
|D’| = d’ and the range |R'| = r’ are finite, and d’ > r’. A universal class of hash
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functions is then defined such that for a randomly chosen h’ € H’, the probability
that any h'(xz) = h/(y) is at most 1/’ for any two distinct = and y.

However, not all protocols allow a hash function to be selected uniformly at
random from a class of hash functions. In that case, the notion of universal classes
of hash functions is not meaningful.

9 Random Functions

Bellare and Kohno showed [2] that several reduced versions of SHA-1 do not be-
have as regular functions. This indicates that regular functions may not be a
suitable theoretical model to analyze the collision resistance of commonly used
hash functions. In previous sections, we also made an observation on Bellare and
Kohno’s claim that regular hash functions fare better than random hash functions
against the birthday attack. Based on this, we suggest not to model hash functions
as regular functions.

Instead, we propose to model hash functions as random functions when analyz-
ing the complexity of the birthday attack. We agree with Bellare and Kohno that
“the design principle of attempting to make hash functions have random behavior
[...] is sound and central to security” [2]. We now explain why random functions
do not suffer from any of the problems described in this paper.

A random function can be defined as follows:

Definition 4 (Random Function). Let F : {0,1}* — {0,1}" be a random func-
tion. If ; € {0,1}"™ has not been queried before, the random function chooses y;
uniformly at random from all 2" range points, and outputs y; = F'(x;). Otherwise,
if ; = x; where j < 4, the random function outputs y; = F(z;) = F(x;).

Unlike for a regular hash function, it is not necessary for a random function to
require that the domain consists of a finite number of elements. Also, it is clear
from the random function definition, that for any subset of the domain, the range
points y; are chosen randomly and independently from a uniform distribution as
well. The statistics of a random function are the same, no matter how the domain
points are chosen. Therefore, for a random function, the success probability of the
birthday attack does not depend on how the domain points are chosen.

10 Conclusions

The notion of a regular hash function was introduced by Bellare and Kohno at
EUROCRYPT 2004, and has subsequently appeared in several research papers. It
is defined as a hash function that has the same number of preimages in the domain
for every hash value. In their original paper, Bellare and Kohno state that “regular
functions fare better than random functions [against the birthday attack]”.

We explain that this statement, which until now remained unchallenged, is
based on the assumption that the attacker chooses the domain points uniformly at



REFERENCES 197

random. However, Bellare and Kohno note that “there are several variants of [the
birthday attack] which differ in the way the [domain] points 1, ...,z are chosen.”
One possible restriction is that domain points correspond to meaningful messages.
For example, if messages consist of only ASCII characters, the most significant bit
of every character must be zero.

For simplicity, we assumed that the choices of the attacker are restricted to
half of the domain points. In that case, we calculate that the probability that the
resulting function is still regular under this restriction is very close to zero.

We then attempt to extend the concept of regularity, and require that a hash
function is also regular under subsets of the domain. We prove that no such hash
function exists, even if we consider only a very small fraction of all possible ways
to divide the domain into subsets.

Thus, the attacker can restrict the domain points in the birthday attack in
such a way that the resulting hash function is not regular. This is our point of
disagreement with Bellare and Kohno’s analysis of why regular functions perform
better than random functions against the birthday attack.

We show how the success probability of the birthday attack against a regular
hash function can be increased (for the same number of trials), compared to Bellare
and Kohno’s analysis. Our results hold even for a highly restricted domain.

If hash functions are modeled as random functions, the choice of the domain
points does not change the success probability of the birthday attack.
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A Linear Subset Regularity for 3-to-1 Bit Hash Func-
tions

Here, we will attempt to construct a 3-to-1 bit linear subset regular hash function
h(z). Let the input = be a binary string, resulting from the concatenation of the
three input bits, such that z < z2 || 21 || ©o. We set h(000) = A, where A can
be either 0 or 1. The other output symbol will then be denoted by B. We now
consider three cases, as shown in Table 2.

e Case 1: Assume h(001) = A. Subset regularity with respect to z2 then
leads to h(010) = h(011) = B. Furthermore, subset regularity with respect
to x1 results in h(100) = h(101) = B. For h to be regular, we must have
h(110) = h(111) = A. However, we now find that restricting the inputs to
r9 @ x1 = 0 results in a constant function.

e Case 2: Assume h(001) = B and h(010) = A. Subset regularity with
respect to za then leads to h(011) = B. Furthermore, subset regularity with
respect to g results in h(100) = h(110) = B. For h to be regular, we must
have h(101) = h(111) = A. However, we now find that restricting the inputs
to o @ x¢ = 0 results in a constant function.
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Table 2 — Constructing a 3-to-1 bit linear subset regular hash func-
tion h(z), where x < x4 || 21 || zo; the values in bold were set initially,
the others are derived from the linear subset regular conditions

Case 1 Case 2 Case 3
’ To T1 X \ h(x) ‘ ’ To T1 X \ h(x) ‘ ’ To T1 X \ h(x) ‘
0o 0 o0 A 0 0 0 A 0 0 0 A
0 0 1 A 0 0 1 B 0 0 1 B
0 1 0 B 0 1 o0 A 0 1 o0 B
0 1 1 B 0 1 1 B 0 1 1 A
1 0 0 B 1 0 0 B 1 0 0 B
1 0 1 B 1 0 1 A 1 0 1 A
1 1 0 A 1 1 0 B 1 1 0 A
1 1 1 A 1 1 1 A 1 1 1 B

e Case 3: Assume h(001) = B and h(010) = B. Subset regularity with
respect to zo then leads to h(011) = A. Furthermore, subset regularity with
respect to x1 @ xo results in A(100) = h(111) = B. For h to be regular, we
must have h(101) = h(110) = A. However, we now find that restricting the
inputs to zo ® 1 ® xg = 0 results in a constant function.

Consequently, there are no 3-to-1 bit hash functions that are linear subset
regular. Also note that imposing all but one linear subset regular condition in
Table 2 leads to an affine hash function. We found by exhaustive search that all
3-to-1 bit hash functions where all but one linear subset regular conditions are
imposed, result in affine hash functions.

B Calculating the Inverses of Matrices A,

In this section, we prove that the matrices Ay of Theorem 3 are invertible, by
showing their relation to Hadamard matrices. We give an explicit formula for
their inverses.

Hadamard matrices are square matrices of which all elements are either 1 or
—1. They were initially proposed by Sylvester [21]. Hadamard [12] later showed
that these matrices are the solution to his maximum determinant problem. An
d x d Hadamard matrix Hy can be defined a matrix satisfying

H,HY =dl, | (14)

where I; denotes the d x d identity matrix.



CALCULATING THE INVERSES OF MATRICES Ap 201

If d is a power of two, Sylvester [21] proposed the following construction for H:

Hy, = [1] ’ (15)

Hgo  Hgpo

H; = [ Hys —Hyps } , for 1 <log,(d) €N . (16)

Let J; be the d x d matrix where every element is equal to one. Matrix K is
the d x d matrix where every element of the first column is 1, and all other elements
are zero. Note that KdeT = Jy. Matrices Ay of Theorem 3 satisfy the equation
H; =2A;— J;3. We now show that matrices A4 are invertible, and calculate their
inverse. Using (14), we obtain

(244 — J9)(244 — Jo)T = dI, (17)

& (240 — Ja)2AT — J]) = dl4

& 4A4AT — 24407 —20,AY + 7,07 = dIy

S 4AGAY —d(KY + Jy) —d(Kg+ JF) +dJg = dly

S 4AAY — dK] — dKg—dJ] = dly

& 4AGAY — dK) — dK4 — dK. K, = dl,
<:>4AdAT = d(Kd+Id)(Kd+Id)T (18)

As K4K4 = K4, we have
(Kd—FId)(Id—Kd/Q):Kd—Kde/2+Id—Kd/2=Id . (19)
Therefore, (Kq + I4)~! = I — K4/2. From (18), we then obtain

AgAT (21, — KT (21 — Kg) = dly . (20)

This equation shows that Ay is invertible, and that its inverse is given by

1
Ayt = AT L - Ka)' (21— Ka) (21)
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1 Introduction

Differential cryptanalysis [6,7] is one of classic cryptanalytic methods for block
ciphers. Resistance against differential cryptanalysis is a typical design criterion for
new block ciphers. Algebraic cryptanalysis is a general method to attack ciphers.
It has been widely used to cryptanalyze many primitives such as stream ciphers [12,
15], multivariate cryptosystems [18] and in particular block ciphers [13,14,16,21].
The basic idea of algebraic cryptanalysis is to express the block cipher as a large
multivariate polynomial system of equations. The secret key of the cipher is the
solution of this system of equations. If the system is very sparse, overdefined or
structured, it may be solved faster than a generic non-linear system of equations.
By solving the system of equations for the block cipher, the key can be recovered
with only a few plaintext-ciphertext pairs.

There are several methods to solve these systems of equations, such as com-
puting a Grobner basis or using a SAT solver. To compute a Groébner basis,
PolyBoRi [10] can be used. MiniSat [17] is a fast SAT solver. The advantage
of computing a Grobner basis is that useful equations can be generated, but this
computation is typically slower than using a SAT solver and can more easily run
out of memory.

However, the feasibility of algebraic cryptanalysis against block ciphers still
remains a source of speculation. The main problem is that the size of the corre-
sponding algebraic system is so large (thousands of variables and equations) that it
seems infeasible to correctly predict the complexity of solving such polynomial sys-
tems. Therefore, algebraic cryptanalysis has so far had limited success in targeting
modern block ciphers.

Recently, some works combining statistical cryptanalysis and algebraic crypt-
analysis were presented [1,3,4,19,25]. Specifically, the combination of differential
cryptanalysis and algebraic cryptanalysis appears to offer an advantage in reduc-
ing the data complexity. In [1,3], Albrecht et al. propose new differential-algebraic
cryptanalytic methods, which they refer to as Attack A, Attack B and Attack C.
In order to describe them, let p denote the probability of the r-round differential
characteristic for an N-round block cipher.

In Attack A, the system of equations consists of the equations of the plaintext
bits, ciphertext bits, and subkey bits, the equations of the key schedule, and
the linear equations resulting from the differential characteristic and the filter
equations of the last (N — r) rounds (i.e. the equations that must hold if the
output difference after round r holds). Attack A recovers the key by solving this
system of equations for each of the about 1/p plaintext-ciphertext pairs.

In Attack B, the same system of equations is used. The longest time to find
that the system of equations is inconsistent, is measured. If this time is exceeded,
a right pair is found with a high probability.

In Attack C, the system of equations only consists of the filter equations after
r rounds for an r-round differential and the key schedule algorithm after r rounds.
The conditions resulting from the differential characteristic and the conditions



INTRODUCTION 207

from the plaintext to the corresponding ciphertext are omitted in Attack C. The
goal of Attack C in [3] is to filter out wrong pairs by solving the system of equations
using tools such as PolyBoRi or MiniSat, and to use the remaining right pair to
recover the subkey bits.

In differential cryptanalysis, the filtering process can only filter out the wrong
pairs according to the difference values of the ciphertext pairs. That is, after the
filtering process, a lot of wrong pairs may still remain, which may increase the time
complexity to recover the key in the differential attack. However, in Attack B and
Attack C, Albrecht et al. claim that the right pairs can be identified with a good
probability if the equations after the r-th round of the differential characteristic
are inconsistent. They claim that with their technique, the time complexity will
be lower than in the standard differential attack. Their work received a lot of
attention in the cryptographic community [5,8, 11,20, 22], because it gives hope
for the combination of a statistical attack and an algebraic attack.

In this paper, we will revisit the differential-algebraic attack given by Al-
brecht et al., which they applied to PRESENT [9]. We find that Albrecht’s method
cannot filter out most of the wrong pairs satisfying the ciphertexts differences.
However, we will show that wrong pairs that do not satisfy the ciphertext differ-
ences, can easily be filtered out without the algebraic method. Using [3,4], it is
not possible to filter out more wrong pairs than using differential cryptanalysis.

Firstly, we show that Attack C typically cannot be used to filter out wrong
pairs that do not satisfy the difference values of the ciphertexts to improve the
differential cryptanalysis. Secondly, we verify using PolyBoRi and MiniSat2 that
Attack B does not improve the current differential results for the PRESENT block
cipher. The reason is that there are too few usable equations in the system of
equations to derive an inconsistency for the wrong pairs or to find a solution for
the right pairs. Based on our findings, we introduce two new methods that can
more reliably use the right pairs to solve the right key within an acceptable time.
For wrong pairs, no solution will be produced. One method is to fix certain key bits
in the system of equations. This will allow an inconsistency to be derived faster.
Another method is to use more than one plaintext-ciphertext pair to construct the
system of equations.

We apply our attack methods to a reduced-round PRESENT block cipher.
With the first method, we attack 15-round PRESENT-80 with 2%° chosen plain-
texts and 2737 equivalent encryptions in the worst case. The 2R-differential
attack on 15-round PRESENT-80 has a data complexity of more than 2%° and a
time complexity of less than 252 memory accesses. Therefore, the time complexity
of the differential-algebraic attack for PRESENT-80 is much larger than that of
the differential attack, but the data complexity is lower and the key does not have
to be the same for every pair. If the number of chosen plaintext pairs that the
attacker can obtain is limited, the algebraic-differential attack might be the only
feasible attack. Note, however, that more rounds can be attacked in the case of
PRESENT-80 using differential cryptanalysis (16 rounds instead of 15 rounds).
We also provide a new attack on 14-round PRESENT-128 with a data complexity



208 ALGEBRAIC TECHNIQUES IN DIFFERENTIAL CRYPTANALYSIS REVISITED

of 2%% chosen plaintexts and a worst-case time complexity of 211283 equivalent
encryptions.

With our second method, the time complexity will be larger than with the first
method for 15-round PRESENT-80. It is an open question whether the second
method can offer an improvement for other block ciphers.

Our work also points out which equations are important in the differential-
algebraic attack. With pure algebraic cryptanalysis, a 5-round PRESENT block
cipher [14,21] can be attacked. Compared to this result, our differential-algebraic
attack can attack more rounds, but the data complexity will be higher than that
for the pure algebraic attack.

This paper is organized as follows. Section 2 describes Albrecht’s differential-
algebraic attack. In Sect. 3, we show why Attack C cannot filter out more wrong
pairs than differential cryptanalysis for most block ciphers. We verify using Poly-
BoRi and MiniSat2 that Attack B cannot improve the differential cryptanalysis of
the PRESENT block cipher. In Sect. 4, we present two methods that can be used
to successfully solve the right key with the right pairs. Our attack methods are
then applied to a reduced-round PRESENT block cipher. We conclude the paper
in Sect. 5.

2 Description of Albrecht’s Differential-Algebraic At-
tack

n [1,3], Albrecht et al. proposed three types of attacks that combine algebraic
techniques with differential cryptanalysis. They are referred to as Attack A, At-
tack B and Attack C. We now describe these three types of attacks.

Attack A.

For an r-round differential characteristic A = (dy,d1,...,0,), the probability of
the differential characteristic is denoted by p. For a pair of plaintexts (P’, P"),
where P’ @ P"” = §p, and the corresponding ciphertexts (C’,C"), two systems of
equations F” and F” are constructed under the same encryption key K. With the
differential characteristic, the following linear equations are constructed:

X;j (&) XII:J = AXi’j — AYViJ‘ = }/1/’] D }/l/); 5
where X; ; and X', are the j-th bit of the input to the S-box layer in round i
for the systems I and F" respectively. The corresponding output bits are Y},
and Y/”;. The values resulting from the differential characteristic are AX; ; and
AY; ;. The linear expressions corresponding to bits of active S-boxes hold with
some non-negligible probability. For the non-active S-boxes, the following linear
relations also hold with non-negligible probability:

/ /A Y 1"
XijoXi;=0=Y,,0Y;; .
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If the r-round differential characteristic is used to recover the key for N rounds,
the differences from the (r + 1)-th round to the N-th round can be derived from
the output difference of the r-th round. Theses differences after the r-th round
are described by equations. Attack A combines the two systems of equations F’
and F”, the above linear relations resulting from the differential characteristic and
the equations from the difference values after round r to produce the system of
equations F that holds with probability p. If about 1/p systems corresponding to
1/p pairs of plaintext-ciphertext can be solved, a right pair is expected to be found
which can then be used to obtain the right key. However, the time complexity to
solve the system about 1/p times may be very high.

Attack B.

Attack B uses the same system equations as Attack A to filter out the wrong pairs.
In a differential attack, the ciphertext difference values are commonly used to filter
out wrong pairs. However, in Attack B, by measuring the time ¢ it maximally
takes to find that the system is inconsistent, it is assumed that a right pair has
been identified with high probability if a time ¢ has elapsed without finding an
inconsistency. More specifically, Attack B assumes that AY; ; holds with a high
probability after time ¢ has elapsed. With the remaining pairs, the subkey bits
involved in the active S-boxes in the first round can be recovered. An alternative
form of Attack B is to recover key bits from the last round. It is assumed that if
time ¢ passes for a given plaintext-ciphertext pair, a right pair has been found. In
this case, some subkey bits in the last rounds will be fixed, and then it is checked
whether time ¢ still passes without contradiction. The time to find an inconsistency
or a reduced-round PRESENT block cipher was measured in Appendix C of [3].

Attack C.

In Attack C, the differential is used instead of the differential characteristic as in
Attack B. If the r-round differential o — ¢, is used to recover the key for N rounds,
the system of equations only consists of the equations resulting from the round
functions from round (r + 1) to round N, the relations for the difference values
from the (r 4 1)-th round to the N-th round, and the equations of key schedule
from the (r + 1)-th round to the N-th round. In this system of equations, there are
no equations to restrict the relations between the plaintext and the corresponding
ciphertext, and there are no equations for the difference values from the first round
to the r-th round. By solving the system of equations and waiting for a fixed time
t, a contradiction can be found in the system of equations. If one tested pair
did not produce a contradiction after a fixed time, it is assumed to be a right
pair satisfying the differential. Then with the right pair, the partial information
for the subkey bits can be recovered. Appendix D in [3] measured the time to
find an inconsistency for a reduced-round PRESENT block cipher. Based on
this measured time, attacks on 16-round PRESENT-80, 17, 18 and 19 rounds of
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PRESENT-128 block cipher were given in [1,3].

3 Inapplicability of Albrecht et al.’s Attacks
3.1 Inapplicability of Attack C

In this section, we will show that Attack C typically cannot be used to filter out the
wrong pairs satisfying the difference values of the ciphertexts. Therefore, the right
pairs cannot be identified and the key cannot be recovered. Moreover, Attack C
can not filter out more wrong pairs than differential cryptanalysis to improve the
differential cryptanalysis. As in the previous description, the system of equations
in Attack C consists of the equations resulting from the round functions from
round (r + 1) to round N, the relations resulting from the difference values from
the (r + 1)-th round to the N-th round, and the equations of key schedule from the
(r + 1)-th round to the N-th round. Let C and C! be the i-th bit of ciphertext
pair C' and C” respectively, and AC; is the i-th bit of the difference value of
ciphertext pair C/ and C”. We then classify these equations into three groups,
Group A, Group B and Group C.

Group A.

The linear equations resulting from the difference values of ciphertexts correspond-
ing to the non-active S-boxes in the last round are

AC,=ClaC!=0,
where the i-th bit position corresponds to an output bit of any non-active S-box.

Group B.

The equations resulting from the difference values of ciphertexts corresponding to
the active S-boxes in the last round are

(AC;, | AC, || - | AC,) = (CL 1 C, |- 11 C) @ (C 1 G |-+ 11 G
=0n,0ny €N,
where i1, 79, ...,1, correspond to output bits of the active S-boxes, and I'y is the

set of the ciphertext difference values.

Group C.

The remaining equations are the equations resulting from the round functions from
round (r + 1) to round N, the relations resulting from the difference values from
the (r + 1)-th round to the (N — 1)-th round, and the equations of key schedule
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from the (r + 1)-th round to the N-th round.

If a plaintext-ciphertext pair satisfies all the equations in Group A, Group B
and Group C, it must be a right pair for the given differential. In the differential
attack, the wrong pairs that do not satisfy the equations in Group A and Group B
are easy to filter out using a look-up table combined with a time-memory trade-off.
Because the equations in Group C involve unknown subkey bits, they cannot easily
be used to filter out the remaining wrong ciphertext pairs after the filtering process
with the ciphertext differences. In Attack C, Albrecht et al. wish to measure the
maximum time ¢ to identify a pair as a wrong pair with all the equations in
Group A, B and C. In fact, the equations in Group A and Group B can easily
be used to find a contradiction because they are only related to the ciphertext
difference values. For a typical block cipher, it is impossible to find contradictions
for the equations in Group C. To understand why this is the case, we claim the
following.

Claim 1. If there is a wrong ciphertext pair that satisfies all the equations in
Group A and Group B but does not satisfy the equations in Group C, it is impossible
for a typical block cipher to find a contradiction for the equations in Group C.

Proof. We consider a block cipher based on a substitution-permutation network
(SPN). For other structures (Feistel, Generalized Feistel,...), a similar proof can
be given. We assume that the difference value of the ciphertext pair satisfies the
equations in Group A and Group B, but does not satisfy the equations in Group C.
First, we will prove Claim 1 for a 1R-attack and extend the proof to an sR-attack*
(s=1,2,3,...).

In a 1R-attack, the wrong ciphertext pair satisfies the output difference values
of all non-active and active S-boxes in the last round, but does not satisfy the input
difference of some active S-boxes in the last round. In most SPN block ciphers,
after the S-box layer in the last round, the whitening subkeys will be XORed.

Let us introduce the shortened notation

L X]

/

z]lH z]2||"'|| Wm0
where X{yj is the j-th bit of the input to the S-box layer in round i. We can then
describe the round function for the last round as follows:

Yy =S[Xy], Cy=Y & KN ,

Y =SIXY], Ch=Yi® Ky,
where X}, and X}, are the inputs of the S-box layer S in the last round for the
system I’ and F” respectively, and Yy, and Yy are the corresponding outputs.

The values C and C}; are the ciphertext bits, and K is the whitening subkey
in the last round.

4An sR-attack means that the r-round differential is used to recover the key for (r+s) rounds
of the block cipher. We require in this paper that s < N, which is the case for typical differential
attacks.



212 ALGEBRAIC TECHNIQUES IN DIFFERENTIAL CRYPTANALYSIS REVISITED

X/ X// X/ X//
Q, Q,
Y Y. Y. Y.
S S S S
Y/ Qe YI/ Y/ Qe Y//
Y ) 4 Y ).
Kn—P P—Kn Kn & Z— P—EKndZ
—AC— —AC—
A\ 4 \4 A\ 4 y
C/ C// C/ @ Z C// @ Z
(a) Right pair, right key (b) Wrong pair, wrong key

Figure 1 — It is not possible to detect that (C' @ Z,C" @ Z) is a
wrong pair (see Claim 1).

We now consider Fig. 1. Under the right key, the wrong ciphertext pair (C' &
Z,C" @ Z) will result in the output difference of the S-box Q. and the input
difference of the S-box Q,,, however, the right pair (C’,C") will result in the
output difference and the input difference for the S-box as €2, and €2, respectively.
As the subkey bits in the above equations are unknown variables, we will solve the
following system of equations,

XN ® XN =Q,.

‘We can obtain
STV @ STHYRY] =,

where S~—! denotes the inverse S-boxes Layer. Then we have
STHCy © Knl® STHCR @ KN =9, .

Because the right pair always can produce the difference from €2, — . for the
active S-boxes, there is at least one pair of input values (X, X)) and the corre-
sponding output values (Y, Y;”) satisfying the following equations:

X eX'=Q, Yovy'=qQ, .

We have
STV e sTHY =X, @ X)' = Q,.

For the wrong pair (C' & Z,C"” & Z), let the whitening subkey in the last round
satisfy the following equations:

CN®Z&Ky=Y, , Cx®ZSKy=Y," .

The resulting wrong whitening subkey Ky @ Z in the last round can make the
wrong pair (C' @ Z,C"” & Z) produce the right input difference .., so the wrong
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pair (C' & Z,C" @ Z) cannot be filtered out with the system of equations in the
last round.

The proof for 1R-attack is helpful to understand the idea. The analysis of
the sR-attack works in a similar way. As stated by Biham and Shamir 7] (and
similarly by Selguk [23]):

“Each surviving pair suggests several possible values for [the subkey] bits. Right
pairs always suggest the correct value for [the subkey] bits (along with several wrong
values), while wrong pairs suggest random values [for the subkey bits].”

This statement is true for typical block ciphers. Therefore, any remaining wrong
pair must produce some solutions for the subkey satisfying the difference values
in the last s-round. The solution may be the right subkey or the wrong subkey.
Thus, it is impossible for most block ciphers to produce a contradiction for the
sR~attack in the above s-round equations.

The equations for the key schedule may lead to a contradiction in Group C
for the derived subkey value for the last s rounds, but the number of the sub-
key bits involved in the last s rounds is usually not large enough to produce a
contradiction, assuming the key schedule is random. However, assume that the
equations for the key schedule result in a contradiction for the subkey values of the
last s rounds. Then, this contradiction holds for all values of the subkeys. That
is, the contradiction is independent of the subkey values. The contradiction must
be a contradiction on the difference of the ciphertext pair: a contradiction on the
values of the ciphertext pair cannot appear because the ciphertext is calculated
as C' = Yy @ Ky. Therefore, this contradiction can be included into Group A
or Group B. Because the differential cryptanalysis attack uses the equations of
Group A and Group B to filter the ciphertext values, an inconsistency in the key
schedule does not improve the differential attack. O

In order to verify Claim 1, we tested the filtering time for different values
of N and r of the PRESENT block cipher. In our tests, we constructed wrong
ciphertext pairs that only satisfy the equations in Group A and Group B, but do
not satisfy the equations in Group C when evaluated on the correct key. We used
the source code provided by Albrecht [2] to apply Attack C with PolyBoRi-0.6 and
MiniSat2. We performed a Grobner basis computation to generate the filtering
equations from the (r + 1)-th round to the (r + 4)-th round for the differential
characteristic (2 < r < 14) for PRESENT-80. These filtering equations can speed
up the procedure of producing the contradiction.

However, there is no contradiction for any ciphertext pair with PolyBoRi-0.6
after six hours of computation. MiniSat2 always obtained the wrong solution for
the key. In Table 1, we list these test results. For the wrong pairs under the right
key, the wrong solution can be obtained within ¢ seconds. We tested 20 wrong
pairs for different values of r and N, and list one example of a wrong pair (P’, P")
and the corresponding right key K. Due to space limitations, we only present the
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difference values for the wrong pair in the last row of Table 1 and the differential
characteristic for the right pair in Table 2. In Table 2, the output difference for
the wrong pair of the r-th (r = 12) round is not equal to the output difference
of the characteristic, but the output difference of the 13-th round is equal to the
output difference of the characteristic. Therefore, this is a wrong pair.

At the same time, we construct the wrong ciphertext pairs for PRESENT-80
which do not satisfy the equations in any Group, the contradiction can be produced
quickly and the filtering time is listed in Table 3. In addition, we construct some
wrong ciphertext pairs that only satisfy the equation in Group A, the time to
produce the contradiction is listed in Table 4. Moreover, we use a look-up table
combined with a time-memory trade-off in differential cryptanalysis to filter out
these pairs. As a result, our filter is more efficient than Attack C.

The computer we used is an IBM X3950 M2 with a CPU clock frequency of
2.4 GHz and 64GB RAM. From Tables 3 and 4, our test time with PolyBoRi
approaches the corresponding time in Appendix D of [3], but our tested time with
MiniSat2 is greater. The main reason is that our CPU is not same as Albrecht’s.
However, we can deduce that the wrong pairs Albrecht et al. used are wrong
pairs that do not satisfy the equations in Group A or Group B, so they did not
filter out wrong pairs that do satisfy the equations in Group A and Group B.
Furthermore, even if Attack C is used as a filter for wrong pairs that do not satisfy
the equations in Group A and Group B, its efficiency is much lower than the filter
used in differential cryptanalysis. This shows that Attack C does not provide an
advantage over differential cryptanalysis for most block ciphers.

Using Group A and Group B in a Differential Attack.

We now clarify in more detail how the equations of Group A and Group B can be
used in a differential attack. We consider two types of differential attacks:

(a) By generating a table of all possible ciphertext differences (corresponding to
all solutions to the equations of Group A and Group B), wrong pairs can
easily be filtered out. Because key counters will be used for the subkey bits
corresponding to the active S-boxes, the number of output differences is less
than the number of key counters required. Therefore, the table of all possible
ciphertext differences provides only a relatively small overhead.

(b) In the filtering process, for each pair of ciphertexts (C’,C"), a table is made
of all possible input differences for the last round. This table does not depend
on the value of the subkey bits in the last round. If we do not find a valid
input difference for a particular pair of ciphertexts, this pair is identified as a
wrong pair (i.e. it does not satisfy the equations of Group A and Group B). In
this way, it is only necessary to make table of all input differences, and not all
ciphertext differences. Typically, the table of all input differences should be
small. For the remaining pairs, subkey bits in the last round will be guessed
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(instead of using key counters), to filter out pairs. For a wrong key, no pairs
will remain, but the right pair will remain for the right key.

Note that (b) is in fact a time-memory trade-off applied to (a). In both (a) and
(b), if output differences are invalid for some active S-boxes, they can be filtered
using smaller tables. Then, the table that is described in (a) and (b) will be used
to filter out the remaining pairs. In the next paragraph, we describe in detail how
(a) can be used for a 2R attack on PRESENT. To construct a filter for a 3R and
4R attack on PRESENT, (b) can be used.

Relation to the Work of [4].

The equation system that Albrecht et al. set up in [4], is similar to the system
of [3], except that the ciphertext bits (C; and C}') are variables instead of fixed
values. This equation system is used to compute a Grobner basis for PRESENT
up to degree D = 3 using PolyBoRi. Polynomials that contain non-ciphertext
variables are removed.

The resulting equations are used as a first filter for the ciphertext pairs. Al-
brecht et al. estimate the probability p; that a random ciphertext pair passes the
first filter as p; ~ 275066 for a 2R-attack on PRESENT-80 and PRESENT-128.
Afterwards, [4] uses Attack C to filter out the remaining pairs. They estimate the
total filtering probability py =~ 2751669 for PRESENT-80 and py ~ 2721361 for
PRESENT-128.

For a 2R-attack on PRESENT, it is straightforward to write a fast program
to compute the total number of ciphertext differences. We find that 11664 ~
21351 ciphertext differences are possible, and store them in a small table. This
results in the accurate filtering probability of p, = 213:51 /264 = 275049 for hoth
PRESENT-80 and PRESENT-128. When we derive the probability of p; ourselves,
using the equations in [4, Fig. 2], we find that p; = ps = p, = 27°049. This
confirms our result, and shows that the calculation of p; and py in [4] is not
correct. The accurate filtering probability p, is slightly lower than the probability
of the rough filter used by Wang [24].

By storing the output differences in a small table, we can easily filter out
the wrong ciphertext pairs without using the algebraic method. Furthermore,
we calculate that the reinterpretation of Attack C in [4] as a technique to filter
ciphertext differences, does not result in a better filter. Therefore, Attack C does
not provide an advantage over differential cryptanalysis in the case of a 2R-attack
on PRESENT.

For a 3R-attack and a 4R-attack on PRESENT, we used a look-up table com-
bined with a time-memory trade-off to filter out 1000 randomly generated wrong
pairs. We note that although the filtering probability of our filter and Attack C is
same, our filter is much faster than Attack C.
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3.2 Inapplicability of Attack B to PRESENT

Attack B involves two other types of equations, besides the equations in Group A,
Group B and Group C in Attack C. The first type of equations is the linear
equations derived from the difference values from round 1 to round r, and the
second type of equations is the round functions and the key schedule algorithm
from round 1 to round r. In this way, the restriction from the plaintext to the
corresponding ciphertext was added. Although we cannot show that Attack B
does not provide an advantage over differential cryptanalysis for any block cipher,
we make the following two observations for Attack B:

Observation 1.

If N approaches the maximum number of rounds that can be attacked with a pure
algebraic attack, the linear equations for the inner rounds and the round functions
restricting the relation between the plaintext and the ciphertext are all usable to
solve the system of equations. There are three possible subcases:

1. If the key size is much larger than the block size, for a wrong pair, the
probability that a solution can be found for the key in the system of equations
is non-negligible. In this way, there is a non-negligible probability that a
contradiction for the wrong pairs cannot be produced. Attack B will likely
fail.

2. If the key size is smaller than the block size, for a wrong pair, the probability
that no solution can be found for the key in the system of equations is high.
In this way, the contradiction for the wrong pairs can be produced and
the right solution for the right pair can be found with a high probability.
Attack B is likely to succeed.

3. If the key size approaches the block size, Attack B can either succeed or fail.

Observation 2.

If N is much larger than the maximum number of rounds that can be attacked with
a pure algebraic attack, the linear equations for the inner rounds and the round
functions and the key schedule algorithm for the inner rounds are not crucial to
solve the system of equations. Only the equations for the outer rounds are relevant.
We consider two subcases.

1. If there are few active S-boxes in the outer rounds, the restriction condi-
tions are so few that a contradiction will be produced with low probability.
Attack B will likely fail.

2. If there are many active S-boxes in the outer rounds, there are enough re-
striction conditions to derive a contradiction with high probability. Attack B
is then likely to succeed.
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In order to verify our observations for a small number of rounds, we apply
Attack B to PRESENT-80 with for N = 4, » = 3. The block size and the key
size for PRESENT-80 are 64 and 80, respectively. We have tested 10 wrong pairs
satisfying the filter conditions in Group A and Group B, but not satisfying the
conditions in Group C. We found that among 10 wrong pairs, only one wrong pair
was filtered out within 1500 seconds. The reason is that the key size is larger than
the block size.

As N and r increase, we ran several tests and list the results in Table 5. We
identify different differential characteristics for the PRESENT-80 block cipher. For
any value of r we tested, the characteristics have two active S-boxes from round 1
to round r. There will be two active S-boxes in round (r 4+ 1) and 6, 7 or 8 active
S-boxes in round (r + 2). Round r + 3 has at least 12 active S-boxes and round
(r 4+ 4) has 16 active S-boxes. We use MiniSat2 to filter out the wrong pairs. For
N=r, N=r+1or N =r+ 2, no wrong pairs were filtered out. For N =r + 3,
very few wrong pairs were filtered out. Although for N = r + 4, more wrong pairs
were filtered out compared to N = r 4 3, lots of wrong pairs still remain. The
reason is that there are more active S-boxes in round (r +4) than in round (r + 3).
This result is consistent with Table 10.8 of [1], where N = r + 4 is used as well.

Further experiments are listed in Table 5. In Table 5, the plaintext pairs are
all wrong pairs and we cannot filter them out within 1500 seconds. Even if wrong
pairs can be filtered out after 1500 seconds, the time complexity of Attack B would
become much higher than differential cryptanalysis. Due to space limitations, we
only present the difference values for the pair in the last row of Table 5 and the
characteristics for the right pair in Table 6. For the pair in Table 6, the output
difference of the r-th (r = 14) round is same as that of the characteristics, but the
difference values from round 2 to round 10 are different from that of the character-
istic. Therefore, this pair is a wrong pair. We also confirmed experimentally that
Attack B cannot filter out wrong pairs that do not satisfy the output difference
for the first round.

Observation 2 can be derived from the following statements:

1. SAT solvers use a tree-structured search algorithm, where branching is per-
formed by heuristic guesses based on non-algebraic criteria. In order to
reduce the search time, we must minimize both the average search depth
and the dependencies of the unknown variables. In this way, those equations
should be identified that tend to result in an inconsistency sooner.

2. In the system of equations in Attack B, the equations that lead to inconsis-
tencies the soonest, are the equations related to the difference values, the
round functions in the outer rounds such as the previous few rounds and the
later few rounds. In contrast, the equations related to the difference values
and the round functions in the inner rounds do not easily lead to inconsisten-
cies. Therefore, the equations in the inner rounds can be removed in order
to reduce the solving time.
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3. Since the equations for the difference value in the outer rounds are very
important for the solving process, we must obtain enough such equations to
ensure there are enough restrictions for the dependent unknown subkey bits.
If there are fewer active S-boxes in the outer rounds, there are not enough
restrictions on the involved unknown subkey bits to obtain the right solution
or filter out the wrong solutions. In other words, if there are more active
S-boxes in the outer rounds, the solving process or the filtering process will
be more efficient.

It is noted that if there are more active S-boxes in the outer rounds, the filtering
process will be efficient, but it is not favorable to filter out the wrong ciphertext
pairs directly according to the difference value of the ciphertexts. This will further
increase the time complexity.

To overcome these problems, we propose the following two methods for the
differential-algebraic attack. The first method is to fix certain key bits to ensure
with a high probability that the right key can be recovered from the right pair.
The second method has the same goal, but adds some extra equations. We will
describe these two attacks in Sect. 4.

4 New Differential-Algebraic Attacks

In Sect. 3, we showed that neither Attack C nor Attack B can improve the differen-
tial cryptanalysis of the PRESENT block cipher. We also explained why Attack C
does not provide an improvement for most block ciphers. The reason is that the
attacks cannot filter out the wrong pairs satisfying the ciphertext difference values
to identify the right pair. We present two methods that can find the right solution
in acceptable time t, based on the system of equations constructed in Attack B.
For the right pair, we can solve the right key within time ¢. If a pair cannot be
filtered within time ¢, we discard it and consider another pair.

Attack 1 Based on Fixing Certain Key Bits.

According to the key schedule algorithm and the outer rounds of the characteristic,
fix the key bits related to the active S-boxes in the top rounds or the bottom rounds.
In this way, inconsistencies can be found sooner. As we showed in Sect. 3.2,
Attack B cannot be used to filter out most wrong pairs. Therefore, our attack
fixes key bits in all tested pairs. The idea of fixing key bits was already proposed
in [3]. The difference with Attack 1 is that we recover the entire key, and not only
subkey bits from the last rounds.

Attack 2 Based on Multiple Pairs.

Because the equations for the difference values in the outer rounds lead to in-
consistencies sooner, appending more such equations will be helpful to find the
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inconsistency. Using multiple plaintext-ciphertext pairs to construct more equa-
tions of outer rounds will make the solving process or the filtering process more
efficient. For example, if two plaintext-ciphertext pairs are used to perform the
attack, the number of such equations will double. This means that if we use two
right pairs to solve the system of equations, the right key can be found. However,
if there is at least one wrong pair involved in the two pairs, the key cannot be
found. In addition, if we use three plaintext-ciphertext pairs, the efficiency can
be improved further. However, as the number of pairs increase, the number of
combinations of pairs grows exponentially and the time complexity increases. So
the number of pairs to construct the system of equations should not be too high.

Our experiments show that some wrong pairs can be filtered out quickly, but
others cannot. However, if most of the wrong pairs cannot be filtered out, the
attack becomes infeasible. So we attack the PRESENT block cipher with the
above approaches and try to solve the right key with the right pairs.

4.1 Attack 1 for the PRESENT Block Cipher

We now apply Attack 1 to the PRESENT block cipher. The results are listed
in Table 7. If we use r = 13 to attack N = 15 rounds of PRESENT-80, the
probability of the characteristic is 2758 (using the last 13 rounds of the 14-round
characteristic of [24]). The filtering probability according to the difference value for
the ciphertext pair is 275949 (as calculated at the end of Sect. 3.1). The CPU clock
frequency is 2.4 GHz. From Table 7, we find that it takes at most 523.16 s to find an
inconsistency. The table also shows that we should guess at least 34 key bits, so the
time complexity will be 23425875049 .2 4.109 . 523.16 = 234 .27-51.231.16 . 99.03 _
28170 CPU cycles. We assume that a single encryption costs at least 16 CPU
cycles per round.® Therefore, the time complexity for our attack (27379 equivalent
encryptions) is better than exhaustive search (28°).6 The data complexity is 259
chosen plaintexts. For the 2R-differential attack, the data complexity must be
higher than 2%° chosen plaintexts, because then one right plaintext-ciphertext pair
is not sufficient to recover the key with a high success probability. However, the
time complexity of the 15-round 2R-differential attack must be lower than 262
memory accesses (the time complexity given for the 16-round differential attack
in [24]). Depending on the processor, one memory access requires about 2 to 10
CPU cycles. This means the complexity of the differential-algebraic attack for
PRESENT-80 is much higher than that of the differential attack, but the data
complexity is lower. Depending on how many chosen plaintext-ciphertext pairs
the attacker can obtain, the algebraic-differential attack might however be the
only feasible attack.

For PRESENT-128, we could not identify the right pairs for r > 12 using
the method from [1]. If we use the 12-round differential characteristic with the

5The bitsliced implementation of PRESENT by Albrecht achieves 16.5 cycles per round [1].
SWe used 20 trials to obtain time t. Although more trials may result in a longer time t, we
expect that our attack will still be much faster than exhaustive search.
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probability 2754 to attack 14-round PRESENT-128, the time complexity will be
about 278+54-50.49431.16+7.97 _ 9120.64 COPU cycles, or about 21283 equivalent
encryptions. The data complexity is 2°° chosen plaintexts.

4.2 Attack 2 for the PRESENT Block Cipher

We respectively use two pairs and three pairs to attack PRESENT. The test results
are listed in Tables 8 and 9. For the right pairs, the right key can be solved within
t seconds. We ran 10 trails for different values of r and N, and one example
of right pairs {(P}, P}),(P{,P{)} or {(P§,P}), (P, P),(Py,Py)} and list the
corresponding right key K. As in Attack 1, we can solve the right key from the
right pairs, but the wrong pairs cannot always be filtered out. So we perform
the test with the right pairs to recover the right key. We obtained the following
results:

1. For N =7r+3 or N = r 4+ 4 rounds of PRESENT-80 with the r-round
differential characteristic, the right key can be solved with the two right
pairs. Some test results are listed in Table 8. However, because we use two
right pairs, this means that if m pairs of ciphertexts remain after filtering
according to the ciphertext difference, we must consider (7;) combinations
of two pairs. However, the solving time for (73) combinations of two pairs
becomes unacceptable. If we attack 16-round PRESENT-80 with a 13-round
differential characteristic with the probability 2758, we choose 2% pairs of
plaintexts and the filtering probability with the ciphertext difference is about
2725711 g0 the number of the remaining ciphertext pairs is about 233-289
which will be combined to produce 2%5-°"® combinations of two pairs. The
time complexity will be 265578 . 23116 . ¢ ~ 988 We have not identified the
right pairs for » = 13, so we cannot test the time for ¢ and it should be more
than 100 seconds according to the test time for r < 13. Therefore, Attack 2
is slower than exhaustive search.

2. For N = r + 2 rounds of PRESENT-80, only few combinations of two right
pairs can be used to solve the right key, so the success rate is too low.

3. For N = r + 4 rounds of PRESENT-128 with the r-round differential, only
few combinations of two right pairs can be used to recover the right key and
the success rate is also very low.

4. For N = r+3 rounds of PRESENT-80 and N = r+4 rounds of PRESENT-128
with the r-round differential, the right key can be solved with the three right
pairs. The test results are listed in Table 9. However, because we use three
pairs, this means that if m pairs of ciphertexts remain, there are (7;) com-
binations of three pairs. However, the solving time for ('g) combinations of
three pairs becomes unacceptable.
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From the above results, Attack 2 (using two pairs or three pairs for PRESENT)
has no advantage over Attack 1 (fixing certain key bits). Maybe these attacks have
some advantage for other ciphers. For example, if there would be more active S-
boxes involved in the outer rounds in PRESENT, maybe we could obtain the right
key using two right pairs with a high success probability.

5 Conclusion

The cryptanalytic method combining differential cryptanalysis and algebraic crypt-
analysis has been a focus topic in the field of the cryptanalysis of symmetric ciphers.
At FSE 2009, Albrecht et al. propose new differential-algebraic attacks, which they
claim improves the results of the differential cryptanalysis. In this paper, we revis-
ited Albrecht’s cryptanalytic method and identified that the time complexity to
identify the right pairs is not correct. Firstly, we showed that Attack C cannot be
used to filter out the wrong pairs satisfying the difference value of the ciphertexts
for most block ciphers to improve the differential cryptanalysis. We identified some
important properties for Attack B and showed that Attack B does not provide an
advantage over differential cryptanalysis for PRESENT. Faugere et al. presented
a similar attack for DES, however, they could only attack 8-round DES with a
5-round differential characteristic. Their attack for DES is accordant with our
Observation 1 in Sect. 3.2 because the key size for DES is smaller than the block
size.

In this paper, we introduce two new methods to perform a differential-algebraic
attack. The first method is to fix certain key bits to solve the system of equations
and the second method is to use multiple pairs to construct the system of equa-
tions. This method is more efficient for the PRESENT block cipher and its data
complexity is better than that of the differential attack, but the time complexity
is worse. Although we did not significantly improve the results of the differential
cryptanalysis for PRESENT, our work indicates which equations are important in
the differential-algebraic attack. For the differential-algebraic attack, we obtain
the following three conclusions:

1. Compared with the differential cryptanalysis, the differential-algebraic at-
tack can reduce the data complexity, but the time complexity increases.
Compared with the algebraic cryptanalysis, the differential-algebraic attack
can attack more rounds because the relations resulting from the differential
characteristic are very important for the solving process.

2. In order to make the solving process in the differential-algebraic attack more
efficient, more active S-boxes should be involved in the outer rounds. How-
ever, more active S-boxes will reduce the filtering probability with the cipher-
text difference and it will increase the time complexity. The lower bound
for the number of the active S-boxes should be used to ensure the system of
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equations can be solved reliably. The detailed analysis of this case can be
seen as future work.

If the methods to solve systems of equations can be improved, and if the
computational power available increases, we expect that differential-algebraic
attacks will gain in importance.
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Table 1 — Attack C’s Filtering Test for Wrong Pairs with MiniSat2

N

T

P/

P/I

K

t(s)

8-10

7

8629917c174f21b7

8¢29917c174f26b7

2b8bc6ad5d4b869101¢2

12.20-12.77

9-11

8

d549b f122a09¢df a

d249bf122a09ea fa

5d05c¢98dce5dab894 f cb

12.26-12.92

10-12

9

5 fc5a0d3979d9d3

f2fcba0d3979ded3

fb3edecafIce361eebd7

12.11-13.03

11-13

10

50d752ee7 f6017d7

57d752ee7 6010d7

afc238c99ce160d8254b

12.22-12.73

12-14

11

155 fdec5b70e8b3a

125 fdec5b70e8c3a

054498 f ce9474d53925

12.33-12.92

13-15

12

504ad07e763a8289

574ad07e763a8589

aTecelTb6ab73269d7e9

12.01-12.71

N: the round number we attack; r: the round number of the differential; K: right key;
(P’, P"): one example of wrong pairs; t: the wrong solution obtained within ¢ seconds.




REFERENCES

Table 2 — Difference Values for Wrong Pair and Right Pair in At-

tack C

R Aw1rong Arigh(‘, R Awrong A1right

I $2=7,£I?14=7 1’221,.%‘14:1

R1|S|za =1, 214 =1|za = 1,214 = 1|| R8 |S| 20 = 9,22 =9 | 258 = 9,210 =9
R1|P m0:4,x3=4 $0=4,$3:4 R8 |P $0=5,LE12=5 .’E2=5,$14=5
R2 S $0:5,£L'3:5 £L'0:5,x3:5 R9 S xo:17:r12:1 $2:1,$14:1
R2|P $0:97x829 $0=9,$8:9 R9 |P xozl,xg,:l .1‘024,3?3:4
RBS 1'0:471‘8:4 1‘0:4,238:4 R].OS $0:3,$3:3 10:5,$3:5
R3P$8=1,£IZ’10=1 1’821,.%‘10:1 R10|P ZIZO=9,$4=9 .Z‘0=9,£If8=9
R4Sl‘8:3,]}10:3 $8:9,I11:9 R11 S $0:4,$4:4 10:4,$8:4
R4|P $2:5,$6=5 1’225,.%‘14:5 R11|P 1138:1,.%‘9:1 xgzl,xm:l
R5 S 1‘2:171‘6:1 ]J2:1,I14:1 R12 S $8:9,$9:9 1‘8:9,$10:9
R5|P 330:4,.T1=4 $0=4,x3:4 R12PX2:3,X14=3 X2=5,x14:5
RGS 1'0:5756‘1:5 56‘0:5,233:5 R138X2:17X14:1 X2:1,X14:1
R6|P 330:3,.T8=3 x0=9,xg:9 R13|P X0=4,X3:4 X0=4,X3=4
R7S 1'0:17558:1 56‘0:4,238:4

R7|P 330:1,.T2=1 1’821,1‘1021

Rj: output difference after round j (S: after S-box layer,
P: after permutation layer); Ayrong: differential value for wrong pair;

Avignt: differential value for right pair.

Table 3 — Filter Time for Wrong Pairs Not Satisfying Equations in

any Group

N | r |ftrails| PolyBoRi| MiniSat2 || N | r |f#trails| PolyBoRi| MiniSat2
98| 20 |3.51-3.85| 4.06-4.64 ||13|12| 20 | 4.99-5.34 | 4.96-5.25
10| 8| 20 |4.89-5.23 | 7.57-8.44 ||14|12| 20 | 6.67-6.83 | 8.86-9.26
111 8| 20 | 7.89-8.41 [11.29-12.34||15(12| 20 |[9.69-10.20|12.80-13.15
101 9| 20 |3.92-4.27 | 4.55-4.79 ||14|13| 20 | 5.66-5.78 | 5.07-5.37
111 9| 20 | 5.32-5.66 | 8.40-8.66 ||15(13| 20 | 7.02-7.50 | 9.08-9.38
1219 20 |6.24-6.59 |12.19-12.45({16|13| 20 | 7.99-8.51 |12.91-13.58
11|10| 20 | 4.28-4.67 | 4.73-4.99 ||15(14| 20 | 6.06-6.18 | 5.24-5.52
12|10| 20 | 4.75-5.09 | 8.35-8.59 |[|16(14| 20 | 6.50-6.95 | 9.04-9.47
13(10] 20 | 6.93-7.05 |12.32-12.59|{17|14| 20 | 8.48-8.88 |13.17-13.77
12|11 20 | 4.66-5.02 | 4.87-5.12

13|11| 20 | 6.09-6.42 | 8.69-8.97

14|11 20 |7.41-10.17(12.42-12.75

fitrails: the number of wrong pairs we test;
PolyBoRi: the filtering time in seconds with PolyBori;

MiniSat2: the filtering time in seconds with Minisat2.
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Table 4 — Filter Time for Wrong Pairs Only Satisfying Equations in
Group A
N | r |ftrails|PolyBoRi|MiniSat2
10| 8 | 20 |5.07-5.55|8.09-8.53
1119 20 [6.33-6.68 |7.34-7.81
12110| 20 |6.02-6.45|7.53-8.12
Table 5 — Attack B’s Filtering Test for Wrong Pairs Satisfying Ci-
phertext Difference Values with MiniSat2 (Timeout ¢ = 1500 s)
N r P’ P’ K
5-7 4 | 67279blefdb93674 | 60279b1e fdb93174 | 9ad864e12a6ecc872280
6-8 5 | ¢dc43299824183d4 | cac43299824184d4 | 70be32 f5dd35396¢db fd
7-9 6 | be887abde0597dd6 | bb887a5de0597ad6 | 716d9698292707b0b6da
8-10 | 7 |cb3f11ab7329e7cf | c23f11ab7329e0cf | 7T8bf3977acaf fded898a
9-11 | 8 |6d736a36a28d4f93|6a736a36a28d4893 | 5e7 f5234d2063c5dd11d
10-12 | 9 |94bd4 f fd6585072¢ | 93bd4 f fd6585002¢ | 1e00538¢107 fT7abcdaT3
11,12,13|10| f02 f740d8d4b6d37 | f72f740d8d4b6a37 |df 76 f9 fda f4ead07d9a2
12,13,14|11|85f4ab19cf1dd9ac | 82 f4abl9cf1lddeac | 5d0de0769a874e36d362
13,14,15|12| ca8b8755e65217af | cd8b8755¢65210af | 2d0d71c7a40d3084ac3a
15,16,17|14| 93464486 fa9ed41 | 94464486 fa9eadl | 8b1c1828ec601df09214
Table 6 — Difference Values for Wrong Pair and Right Pair in At-
tack B
R Awrong Aright R Awrong Aright
I 1’2:7,!E14:7 $2:7,I14:7
R1 S $2=1,$14=1 $2=1,CE14=1 RS8 S 138:5,:510:5 55829,%10:9
R1|P :E0:4,:L’3:4 1’0:4,IE3 =4 RS |P .’L’2:5,:B10:5 332:5,{1’14:5
R2 S $0=9,$3:9 $0:5,$3=5 R9 S $2=1,LE10=1 CC2=1,J}14=1
R2|P 1’0:9,!E12:9 1’0:9,%8:9 R9 |P 130:4,.%2:4 $0:4,$3:4
R3 S $0=4,$12=4 $0:4,$8=4 R10 S CEO=5,$2=5 $0=5,LE3=5
R3|P 1’8:1,!E11:1 .'Egzl,l’lo:l R10|P 130:5,.%3:5 $0:9,$8:9
R4 S xg:9,x11 =9 $8=9,£B10:9 R11 S LIZO=4,.128=4 $0:4,LE8=4
R4 P T2 :9,.%14 =9 X2 :571714 =5 Rll P xrg = 1,%10 =1 xrs = 1,1‘10 =1
R5 S Xro :4,.1‘14 =4 XTo = 1,:13'14 =1 R12 S xrs :974310 29 xrs 2973210 =9
R5 P 1’8:4,.%11:4 $0:4,$3:4 R12 P .’L’2:5,$14:5 $2:5,$14:5
RG S xg:5,x11:5 $0:5,$3=5 R13 S $2=1,LE14=1 $2=1,$14=1
R6|P 1'2:9,581():9 $0:9,£Eg:9 R13|P x0:4,m3:4 m0:4,$3:4
R7 S x2:4,$10=4 330:4,.T8=4 R14 S 332:471310:4 x0:4,m8:4
R7|Plzs =4,210 =4|zs = 1,210 = 1||R14|P| 20 =9, 28 =9 | 20 = 9,28 = 9

Rj: output difference after round j (S: after S-box layer,
P: after permutation layer); Ayrong: differential value for wrong pair;

Avignt: differential value for right pair.
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Table 7 — Time to Solve Right Key under Some Fixed Key Bits with

MiniSat2
Ks| N | r |ftrails| Nk t(s) Ks| N | r |ftrails| Nk t(s)
80| 10 (10| 20 |32]45.18-285.20|| 80 [14-17|14| 20 |36 63.47-120.08
80| 11 |10]| 20 |32(64.45-564.87([128| 10 [10| 20 |79 | 43.75-288.63
80| 12 |10 20 |32(61.88-591.56([128| 11 [10| 20 |78 | 63.38-821.45
80| 13 |10| 20 |32]53.49-497.96(|128| 12 [10| 20 |75 79.83-966.38
80| 11 |11] 20 |33(60.19-151.28({128| 13 [10| 20 |72 89.15-751.30
80| 12 |11] 20 |[33(53.01-316.94([128| 11 |[11| 20 |79 98.35-662.19
80| 13 |11| 20 |33]56.64-528.03(|128| 12 |[11| 20 |79 | 58.73-483.92
80| 14 (11| 20 |33|56.25-104.26(|128| 13 |11| 20 |79 | 69.41-805.18
80| 12 (12| 20 |34|97.19-487.77||128| 14 |11| 20 |71 | 78.20-891.08
80| 13 |12 20 |34|69.24-680.41||128| 12 |12| 20 |82 57.35-115.11
80| 14 (12| 20 |34|61.09-110.02(|128| 13 |12] 20 |82|118.08-668.53
80| 15 (12| 20 |34 59.25-77.82 ||128| 14 |12 20 |78 | 61.84-251.14
80 [13-16|13| 20 |34|85.54-523.16(|128| 15 [12| 20 |66 | 64.86-309.90
N: the number of fixed key bits.
Table 8 — Time to Solve Right Key using Two Right Pairs with
MiniSat2
Ks|N|r P, P Py, P/ K t(s)
80 (12| 9 |39121b2bf fad3bbc, | 3e121b2bf fad3cbe, | 463434233 || |132.88-377.13
91f1a75a4f4d33e0 | 96 f1a75a4 f4d34e0 | 0d53e8cd71
80 [13]10| 67bb6eecd081767¢, | 60bb6eecd081717¢, |6 fcaf3033d |||122.00-849.89
6/62c9bd561 f718e | 6862c9bd561 f768e | 39296¢0 f66
80 [14|11|c2b3135aa3b8 f3b4, | c5b3135aa3b8 f4b4, | 22¢587b7b2 || {129.01-213.98
8a43480¢3122ab14 | 8d43480c¢3122acl4 | 607cddab90
80 [15[12| c2b3135aa3b8 f3b4, | 125 fcb08a fed6df 3, | 155 fcb08af || |133.64-141.75
85¢6576306a6a545 | 82¢6576306a6a245 | edbaf317f1
80 [13] 9 |0c03406225bf97cd, | 060034062250 f90cd, | cca9deeb2c || {115.61-133.35
0bbd25aea7c5b0c9 | 0cbd25aea7c5b7c¢9 | 0d98071cab
80 [14[10|9434381¢b8083429, | 9334381cb8083329, | abTbd7 fdf8 || |124.22-132.99
0640a64€215244¢6 | 0c40a64€215243¢6 | 93 fb87c9cd
80 [15|11|8814d6beal7 fd660, |8 f14d6beal7 fd160, | aTd16cdald || |130.48-144.89
f02e367f419a412e | f72e367f419a462¢ | b76ecd2756
80 [16|12|cbaef2£923614742, | ccaef2£923614042, | 669b4087a6 || |189.26-280.49
b37eel f334c4207b | bdTeel f334c427Tb | 254 f2bbe f2
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Table 9 — Time to Solve Right Key using Three Right Pairs with

MiniSat2

K;|N|r Py,P{,P; Py PPy K t(s)

80 [11] 9 |d9591f f50fcldf6d,|de591 f 50 fcld86d,
£9866c0009f3bf44, | fe866c0009 f3b844, 66efab8af3 || 177.77-1402.2
0e768137 f568779d | 09768137 f568709d T4afe67553

80 [12]10| 3a659aa3dc72107c, | 3d659aa3dc72177c,
62129df1a637b88 f, | 65129df 1a637bf8 f, 2dc9fcef f3 || 240.70-578.68
¢566bb319010 f0df | 26666319010 f7df 17419919¢4

80 |13 |11 383663a9bc01cech, | 3f3663a9bc01c9ch,
88042 f67e3b59€95, | 8 f042 f67e3b59995, a0f5a72090b || 247.53-t
¢842b19a415d9105 | cf42b19a415d9605 b95180a2lc (t > 2500)

80 |14 12| 2ddbc9427de fbee, | 2adbcI427de fbeee,
2aa2624e2cbldede, | 2da2624e2cbld9de, 3200679dd6 || 293.21-408.40
4d19fefd126a29¢e | 4al9fefdl26a2eee 3d29ael8bc

80 12| 9 | 3d84126858¢7435¢, | 3a84126858c7445¢,
32a6811bd0c6a32e, | 35a6811bd0c6ad2e, 5da70ed0b5 || 216.35-239.90
cd66cbdb18¢23¢H5 | cab6cbdbl8c23b55 13fb14435¢

80 |13|10| e519cccfad0ce691, | €219cce fadlcel9l,
ebaa80afcfc216a3, | e2aa80afcfc211a3, 72ada6021d || 238.47-258.13
8al79faf87127908 | 8d179fa f87127e08 d2667ab4eb

80 [14|11| f5a33b54749b6624, | f2a33b54749b6124,
b2 f64b6¢661d6101, | b5 f64b6c661d6601, 8ab6e28d86 || 292.15-319.56
2d106b5e6d2b4e24 | 2a106b5e6d204924 9e f6858a87

80 [15]12| e6005b48d2abd194, | e1005b48d2abd694,
41909df alac196d9, | 46909dfalacl191d9, 393d660706 || 271.31-340.26
0e43381eb485d900 | 0943381eb485de00 1dbe32¢806

128(13] 9 |9d6902 268514522, | 926902 f268514222, | 0578224d0c9ebal0 ||
95d585a882e6€250, | 92d585a882e6e550, | bb0 fd3b56d8b4834 |235.64-265.20
2da0d2114 f1805¢2 | 2aa0d2114 f1802c2

12814(10|972331 fa763 f86bd, | 902331 fa763 f81bd, | d8cad46899016e69 ||
50d342a2a6dcelTa, | 57d342a2a6dce67a, | 17641 f71e11d09f5 |235.16-291.02
efdfd44485f1ee81 | e8dfd44485 f1e981

128 15|11 |76971713b1 f0d438, | 71971713b1 f0d338, | 9¢3328405¢865b25 ||
aed2ee07adl1dcbd, | a9d2ee07ad11db6d, | 2201229¢273 fd1dd |285.00-303.82
e609bfed79d4143b | €109bfed79d4133b

12816 |12 | €b449a907d31f33e, | ec449a907d31 f43e, | 73 f df 364db99c472 ||
84363465aaddb304, | 83363465aaddb404, | bb7a8e563b20al 2 |316.21-414.30
€3a2e5866 f5814a9 | e4a2e5866 f5813a9
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Differential and Linear Cryptanalysis using
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Abstract. Differential and linear cryptanalysis are two of the most
powerful techniques to analyze symmetric-key primitives. For mod-
ern ciphers, resistance against these attacks is therefore a mandatory
design criterion. In this paper, we propose a novel technique to prove
security bounds against both differential and linear cryptanalysis. We
use mixed-integer linear programming (MILP), a method that is fre-
quently used in business and economics to solve optimization prob-
lems. Our technique significantly reduces the workload of designers
and cryptanalysts, because it only involves writing out simple linear
inequality constraints that are input into an MILP solver. As very
little programming is required, both the time spent on cryptanalysis
and the possibility of human errors are greatly reduced. Our method
is used to analyze Enocoro-128v2, a stream cipher that consists of 96
rounds. We prove that 38 rounds are sufficient for security against
differential cryptanalysis, and 61 rounds for security against linear
cryptanalysis. We also illustrate our technique by calculating the
number of active S-boxes for AES.

Keywords: Differential cryptanalysis, Linear Cryptanalysis, Mixed-
Integer Linear Programming, MILP, Enocoro, AES, CPLEX

1 Introduction

Differential cryptanalysis [1] and linear cryptanalysis [18] have shown to be two
of the most important techniques in the analysis of symmetric-key cryptographic

*This work was supported in part by the Research Council K.U.Leuven: GOA TENSE, the
IAP Program P6/26 BCRYPT of the Belgian State (Belgian Science Policy), and in part by the
European Commission through the ICT program under contract ICT-2007-216676 ECRYPT II,
and is funded by the National Natural Science Foundation of China (No. 61073150).

TThis author is funded by a research grant of the Institute for the Promotion of Innovation
through Science and Technology in Flanders (IWT-Vlaanderen).
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primitives. For block ciphers, differential cryptanalysis analyzes how input differ-
ences in the plaintext lead to output differences in the ciphertext. Linear crypt-
analysis studies probabilistic linear relations between plaintext, ciphertext and
key. If a cipher behaves differently from a random cipher for differential or linear
cryptanalysis, this can be used to build a distinguisher or even a key-recovery
attack.

For stream ciphers, differential cryptanalysis can be used in the context of a
resynchronization attack [10]. In one possible setting, the same data is encrypted
several times with the same key, but using a different initial value (IV). This is
referred to as the standard (non-related-key) model, where the IV value is assumed
to be under control of the attacker. An even stronger attack model is a related-key
setting, where the same data is encrypted with different IVs and different keys.
Not only the IV values, but also the differences between the keys are assumed
to be under control of the attacker. Similar to differential cryptanalysis, linear
cryptanalysis can also be used to attack stream ciphers in both standard and
related-key models. In the case of stream ciphers, linear cryptanalysis amounts to
a known-IV attack instead of a chosen-IV attack.

Resistance against linear and differential cryptanalysis is a standard design cri-
terion for new ciphers. For the block cipher AES [12], provable security against
linear and differential cryptanalysis follows from the wide trail design strategy [11].
In this work, we apply a similar strategy. After proving a lower bound on the
number of active S-boxes for both differential and linear cryptanalysis, we use the
maximum differential probability (MDP) of the S-boxes to derive an upper bound
for the probability of the best characteristic. We assume (as is commonly done)
that the probability of the differential can accurately be estimated by the proba-
bility of the best characteristic. Several works focus on calculating the minimum
number of active S-boxes for both Substitution-Permutation Networks (SPNs) [11]
and (Generalized) Feistel Structures (GFSs) [4,5,15,23]. Unfortunately, it seems
that a lot of time and effort in programming is required to apply those techniques.
This may explain why many related constructions have not yet been thoroughly
analyzed. In this paper, we introduce a novel technique using mixed-integer linear
programming in order to overcome these problems.

Linear programming (LP) is the study of optimizing (minimizing or maximiz-
ing) a linear objective function f(z1,xa,...,%y), subject to linear inequalities in-
volving decision variables x;, 1 < ¢ < n. For many such optimization problems,
it is necessary to restrict certain decision variables to integer values, i.e. for some
values of i, we require z; € Z. Methods to formulate and solve such programs
are called mixed-integer linear programming (MILP). If all decision variables x;
must be integer, the term (pure) integer linear programming (ILP) is used. MILP
techniques have found many practical applications in the fields of economy and
business, but their application in cryptography has so far been limited. For a good
introductory level text on LP and (M)ILP, we refer to Schrage [22].

In [6], Borghoff et al. transformed the quadratic equations describing the
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stream cipher Bivium into a MILP problem. The IBM ILOG CPLEX Optimizer*
was then used to solve the resulting MILP problem, which corresponds to recov-
ering the internal state of Bivium. In the case of Bivium A, solving this MILP
problem takes less than 4.5 hours, which is faster than Raddum’s approach (about
a day) [21], but much slower than using MiniSAT (21 seconds) [§].

For the hash function SIMD, Bouillaguet et al. [7] used an ILP solver to find
a differential characteristic based on local collisions. Using the SYMPHONY
solver,® they could not find the optimal solution, but found lower bounds for
both SIMD-256 and SIMD-512. The computation for SIMD-512 took one month
on a dual quad-core computer.

In [4,5], Bogdanov calculated the minimum number of linearly and differentially
active S-boxes of unbalanced Feistel networks with contracting MDS diffusion. He
proved that some truncated difference weight distributions are impossible or equiv-
alent to others. For the remaining truncated difference weight distributions, he
constructed an ILP program which he then solved using the MAGMA® Compu-
tational Algebra System [3]. Compared to Bogdanov’s technique, the fully au-
tomated method in this paper is much simpler to apply: Bogdanov’s approach
requires a significant amount of manual work, and the construction of not one but
several ILP programs. We will show how this can be avoided by introducing extra
dummy variables into the MILP program.

While this paper was under submission, Wu and Wang released a paper on
ePrint [27] that also uses integer linear programming to count the number of
active S-boxes for both linear and differential cryptanalysis. Just as in Bogdanov’s
approach, their algorithms require a large number of ILP programs to be solved,
instead of only one as in the technique of this paper.

We apply our technique to the stream cipher Enocoro-128v2 [25,26], in order
to obtain bounds against differential and linear cryptanalysis. We consider both
the standard and related-key model. All MILP programs are solved using CPLEX.
There are 96 initialization rounds in Enocoro-128v2. We prove that 38 rounds
are sufficient for security against differential cryptanalysis, and 61 rounds against
linear cryptanalysis. These security bounds are obtained after 52.68 and 228.94
seconds respectively. We also calculate the minimum number of active S-boxes for
up to 14 rounds of AES, which takes at most 0.40 seconds for each optimization
program. Our experiments are performed on a 24-core Intel Xeon X5670 Processor,
with 16 GB of RAM.

This paper is organized as follows. Sect. 2 explains how to find the minimum
number of active S-boxes for a cryptographic primitive by solving an MILP pro-
gram. A brief description of Enocoro-128v2 is given in Sect. 3. In Sect. 4 and
Sect. 5, we construct an MILP program to prove that Enocoro-128v2 is secure
against differential cryptanalysis and linear cryptanalysis respectively. We pro-
vide some ideas for future work in Sect. 6, and conclude the paper in Sect. 7. In

4http://www.ibm.com/software/integration/optimization/cplex-optimizer/
Shttp://projects.coin-or.org/SYMPHONY
Shttp://magma.maths.usyd.edu.au/
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App. A, we calculate the minimum number of active S-boxes for AES using our
technique, and provide the full source code of our program.

2 Constructing an MILP Program to Calculate the
Minimum Number of Active S-boxes

We now explain a technique to easily prove the security of many ciphers against
differential and linear cryptanalysis. Our method is based on counting the mini-
mum number of active S-boxes. To illustrate our technique, we use Enocoro-128v2
and AES as test cases in this paper. The constraints we describe are not spe-
cific to these ciphers, but can easily be applied to any cipher constructed using
S-box operations, linear permutation layers, three-forked branches and/or XOR
operations.

2.1 Differential Cryptanalysis

We consider truncated differences, that is, every byte in our analysis can have
either a zero or a non-zero difference. More formally, we define the following
difference vector:

Definition 1. Consider a string A consisting of n bytes A = (Ag, A1,...,Ap_1).
Then, the difference vector x = (zg,21,...,2n—1) corresponding to A is defined

as
0 if A;=0,

T; =
1 otherwise .

Constraints Describing the XOR Operation.

x?ﬁbl, and the
corresponding output difference vector be & ,. The differential branch number is
defined as the minimum number of input and output bytes that contain differences,
excluding the case where there are no differences in inputs nor outputs. For XOR,
the differential branch number is 2. In order to express this branch number in
linear inequality constraints, we need to introduce a new binary dummy variable
d®.7 If and only if all of the three variables :cffll 795?%2 and z& , are zero, d® is zero,
otherwise it should be one. Therefore we obtain the following linear constraints (in
binary variables) to describe the relation between the input and output difference

@D
xing )

Let the input difference vector for the XOR operation be (

"Note that this extra variable was not added in [4,5], which is why Bogdanov had to solve
several ILP programs instead of only one.
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vectors:

D D D 52
xinl + xing + Lout Z 2d )
d® > 2@
D 7]
d 2 'rinz ?
d® > 29

out

Constraints Describing the Linear Transformation.

The constraints for a linear transformation L can be described as follows. Assume

L transforms the input difference vector (¢, ,x% - 7$¢LnM) to the output dif-
ference vector (zl,, , a5, .-+, zk, )+ Given the differential branch number Bp,

a binary dummy variable d” is again needed to describe the relation between the
input and output difference vectors. The variable d” is equal to 0 if all variables
xiLnl , xiLm, e ,aciLnM, xgutl,xgut,z, e ,xgutM are 0, and 1 otherwise. Therefore the
linear transformation L can be constrained by the following linear inequalities:

L L L
xinl—"_a"ing—"_.'.—‘rw‘

L L L L
an+xout1 +xout2+”'+xoutM > Bpd )

L L
d Zminl ’

dt > 2k

The Objective Function.

The objective function that has to be minimized, is the number of active S-boxes.
This function is equal to the sum of all variables that correspond to the S-box
inputs.

Additional Constraints.

An extra linear constraint is added to ensure that at least one S-box is active:
this avoids the trivial solution where the minimum active S-boxes is zero. If all d-
variables and all z-variables are restricted to be binary, the resulting program is a
pure ILP (Integer Linear Programming) problem. If all d-variables are restricted to
be binary, but only the x-variables corresponding to the input (plaintext), the lin-
ear inequality constraints ensure that the optimal solution for all other z-variables
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will be binary as well. This is similar to Borghoff’s suggestion in [6], and results in
an MILP (Mixed-Integer Linear Programming) problem that may be solved faster.

2.2 Linear Cryptanalysis

For linear cryptanalysis, we define a linear mask vector as follows:

Definition 2. Given a set of linear masks I' = (g, T'y,...,',_1), the linear mask
vector ¥ = (Yo,Y1,---,Yn—1) corresponding to I' is defined as

o 0 ifI'y=0,
i = 1 otherwise .

The duality between differential and linear cryptanalysis was already pointed
out by Matsui [19]. The constraints describing a linear function are the same as
in the case for differential cryptanalysis, however the differential branch number
Bp is replaced by the linear branch number Bj. The linear branch number is the
minimum number of non-zero linear masks for the input and output of a function,
excluding the all-zero case. No extra constraints are introduced for the XOR
operations, because the input and output linear masks are the same.

For a three-forked branch, we proceed as follows. Let the input linear mask
vector for the three-forked branch be yfn, and the corresponding output linear mask
vector be (y5,,Ybut,). We introduce a binary dummy variable [" to generate the
following linear constraints for the three-forked branch:

= = = -
yin + youtl + yout2 Z 2l 9
ST
'_
> Yout, >

'_
Z youtz .

ll—

ll—

3 Description of Enocoro-128v2

The first Enocoro specification was given in [24]. Enocoro is a stream cipher,
inspired by the PANAMA construction [9]. Two versions of Enocoro were specified:
Enocoro-80v1 with a key size of 80 bits, and Enocoro-128v1 with a key size of 128
bits. Later, a new version for the 128-bit key size appeared in [14]. It is referred
to as Enocoro-128v1.1. We now give a short description of Enocoro-128v2. For
more details, we refer to the design document [25, 26].

Internal State.

The internal state of Enocoro-128v2 is composed of a buffer b consisting of 32 bytes
(bo,b1,...,b31) and a state a consisting of two bytes (ag,a1). The initial state is
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loaded with a 128-bit key K and a 64-bit IV I as follows:

b7 =K, 0<i<16,

—96 .
B =L, 0<i<8.

All other internal state bytes are loaded with predefined constants.

Update Function.

The update function Next uses functions p and A to update the internal state as
follows:

(a(t+1),b(t+1)) - Ne:z:t(S(t)) - (p(a(t),b(t)),)\(a(t),b(t))) .

An schematic overview of this function is given in Fig. 1.

Function p.

The function p updates the state a. It consists of an 8-bit S-box operation, a
linear transformation I and XORs. The transformation L is defined as a linear
transformation with a 2-by-2 matrix over GF(28):

(2)=towu=(1 5) (). acore.

where d = 0x02, ug = aét) @ S[bg)] and u; = agt) @ S[bgt)]. The updated state

(a(()H'l), agtH)) is then calculated as follows:

ag ™ = v ® S
iV = vy @ S .

Function ).

The A function of Enocoro-128v2 consists of XOR operations and a byte-wise
rotation of the buffer b. It is defined as follows:

b @al’, ifi=0,
b el ifi=3
B = L el ifi=38
B\ @bl ifi=17

bgt_)l otherwise .
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Figure 1 — State Update during the Initialization of Enocoro-128v2.
Indices of buffer (on the left) refer to b-variables, indices of the state
(on the right) refer to a-variables.

Output Function Out.

After 96 initialization rounds, the Enocoro-128v2 output function outputs the
lower byte of the state.

Out(SW) = af") .

Several results [13,16,17,20,26] on differential and linear cryptanalysis have
already been published for different versions of Enocoro. In this paper, we consider
the most recent version Enocoro-128v2 [25,26] as an example to illustrate our
technique. Watanabe et al. already showed that at least 2!77® chosen IVs are
required for a differential attack on Enocoro-128v2 [26]. For a linear attack, Konosu
et al. [17) showed that 2216 known IVs are required for an attack on the 64-round
variant Enocoro-128v1.1. Although these results are already sufficient to prove the
security of Enocoro-128v2 against linear and differential cryptanalysis, we explain
in this paper how to prove the security against these attacks in a much easier way.

4 Differential Cryptanalysis of Enocoro-128v2

Our technique is now used to find the minimum number of active S-boxes for the
stream cipher Enocoro-128v2. We consider an idealized variant of Enocoro-128v2,
for which the minimum number of active S-boxes is a lower bound for the real
Enocoro-128v2. In this idealized variant of Enocoro-128v2, the S-boxes can map
any non-zero input difference to any non-zero output difference. The same holds
for the L-function, with the restriction that the branch number is 3.

For this idealized variant of Enocoro-128v2, we have written a program to
calculate the minimum number of active S-boxes. We present our problem as
a mixed-integer linear programming (MILP) problem, and use CPLEX to solve
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it. The solution corresponds to the minimum number of differentially active S-
boxes for Enocoro-128v2. It is used to prove the security of the cipher against
differential cryptanalysis, using a similar proof as for the block cipher AES [11,12].
Note that an actual characteristic with the given number of active S-boxes may or
may not exist, depending on the specific S-box and L-function that is used. This
is not a concern for us, as our goal is to prove a security bound against differential
cryptanalysis.

4.1 Constructing the MILP Program

Enocoro-128v2 has eight XOR operations and one linear transformation L in each
round. We represent the differential behavior of each of these operations by a
set of linear inequality constraints, as described in Sect. 2. Let us take the first
round of Enocoro-128v2 as an example. The initial difference vector in the buffer
and states is represented by the binary variables (xg,x1,...,231) and (32, 233)
respectively. Let us consider the XOR operation which has the rightmost byte of
buffer b, i.e. b31, and state byte ag as inputs. These correspond to binary variables
x31 and x3o respectively, the input difference vector for this XOR operation. From
the update function, we can obtain the corresponding value of the leftmost byte
of buffer b, i.e. by, after the first round. Let the corresponding output difference
vector be w34, which is the first new binary variable that we introduce. After
introducing a binary dummy variable dg, this XOR operation can be described by
the constraints:

231 + X32 + 234 > 2dg
do > 31
do > w39

do > w34 .

We now consider the second XOR, operation, for which buffer by (input to the
first S-box) and the state ag are the inputs. Because the S-box is bijective, it is
not only the case that the zero input difference results in a zero output difference,
but also that a non-zero input difference results in a non-zero output difference.
We find that (22, x32) is the difference vector of the second XOR operation. The
second new variable, x5, will be the output difference vector for this second XOR
operation. Similarly, for the third XOR operation, the input difference vector is
(z7,x33) (corresponding to (b7, a1)), and the output difference vector is x3¢. Given
two binary dummy variables d; and ds for the second and third XOR operation
respectively, we again obtain four linear constraints for every XOR operation.

From the structure of the linear transformation of Enocoro-128v2, we know
that (z35,x36) is the input difference vector for the linear transformation L in the
first round. By introducing a new binary variable ds, the relations between the
output difference vector (z37,23s) and the input difference vector (x3s5,z36) are
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Figure 2 — Difference Vectors for Nine Operations in the First Round
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Figure 3 — Differential State Update during the Initialization of
Enocoro-128v2. The indices refer to xz-variables.

easily described by the following constraints:

T35 + T3¢ + T37 + T38 > 3d3
dz > x35 ,
d3 > x36 ,
d3 > w37 ,
dz > w38 .

The other five XORs in the first round are represented in a similar way. The
new variables x3g, T40, T41, 42 and z43 are shown in Fig. 2. These constraints
result in the binary dummy variables dy, ds, dg, d7, dg. For all the eight XORs
and one linear transformation L, ten new binary variables x3q4, 35, ..., 243 and
nine binary dummy variables dg,d,...,ds are required. Therefore, a system of
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4-8+5-1 = 37 constraints is obtained to describe all the nine operations in the first
round (and also every subsequent round) of Enocoro-128v2. The detailed input
and output vectors for all the nine operations are shown in Fig. 2.

After one round the difference vector for buffer and state will be

($347$0,$1,$417$37 vy L6y Lh2, L8y - o oy 15, X435 L1Ty - - - 75530)

and (x39, 240) respectively. All binary x;-variables obtained for the first round are
illustrated in Fig. 3. Therefore, using this technique we can represent the differen-
tial update of Enocoro-128v2 for any round with a system of linear constraints.

4.2 The Minimum Number of Active S-boxes for Differential
Cryptanalysis

We now focus on the variables that represent the S-box inputs in every round. Note

that zo, x7, 16, and o9 correspond to the input differences of the S-boxes, and

therefore determine if the S-box is active or not. Let D; include the four indices

of variables that represent the four S-box inputs in the i-th round (1 < i < 96).

The 96 sets include the indices for variables that represent the four S-box inputs
in each round. They can easily be obtained from Sect. 4.1, and are as follows:

D, = {2,7,16,29} ,
Dy = {1,6,15,28} ,
D3 = {0,5,14,27} |
Dy = {34,4,13,26} ,
Ds = {44,3,12,25} |

Dy = {954,941,902, 863} .

Let kxn be the number of active S-boxes for NV rounds of Enocoro-128v2. If

Iy = U D; ,

1<i<N

k‘N:ZCEi

i€lN

then

will be the number of active S-boxes in N rounds of Enocoro-128v2. To avoid
the trivial case where no S-boxes are active, we add an extra linear constraint
to specify that least one S-box is active. If we can minimize the linear function
kny = Zz’e Iy Ti, 1t will give us the minimum number of active S-boxes for NV
rounds of Enocoro-128v2. This will provide a security bound for Enocoro-128v2
against differential cryptanalysis. The objective function ky =3, 1y %i 1s alinear
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function, constrained by a system of 37N linear inequalities. If all variables must
be binary variables, this corresponds to an ILP program.

It is easy to verify that the maximum differential probability for the 8-bit S-
box of Enocoro-128v2 is 2=4678. As the IV is limited to 64 bits, there are at
most 264 IV pairs for any given difference (if the key is fixed). Because there
exists a generic attack with a data complexity of 264 I'Vs (obtaining the entire
codebook under one key), attacks requiring 264 I'V's or more should not be feasible.
Therefore, we do not consider attacks using more than 264 I'Vs, even in a related-
key setting. If the number of active S-boxes in the initialization rounds is at
least 14 > 64/4.678, we consider the cipher to be resistant against differential
cryptanalysis. Because we allow differences in both the key and the IV, our results
hold both in single-key and related-key settings. We note that typically, differential
and linear cryptanalysis are used to attack a few more rounds than the number of
rounds of the characteristic. The cipher must also be resistant against other types
of attacks and add extra rounds to provide a security margin. For these reasons,
more rounds should be used than suggested by our analysis.

In order to optimize the MILP program, we use CPLEX. The experiments are
implemented on a 24-core Intel Xeon X5670 @ 2.93 GHz, with 16 GB of RAM.
Because this computer is shared with other users, execution times may be longer
than necessary, which is why we do not give timing information for all problem
instances. We found that it takes about 52.68 seconds to show that the minimum
number of active S-boxes for 38 rounds of Enocoro-128v2 is 14. Therefore, 38
rounds of Enocoro-128v2 or more are secure against differential cryptanalysis. The
minimum number of active S-boxes for each round of Enocoro-128v2 are listed in
Table 1.

We would like to point out to the reader, that the seemingly complex bookkeep-
ing of variable indices should not be a concern for the cryptanalyst who wishes to
use this technique. The MILP linear constraints can be generated by a small com-
puter program. This program keeps track of the next unused z- and d-variables.
It is then easy to replace every XOR and L function operation in the reference im-
plementation of the cipher by a function to generate the corresponding constraints,
and every S-box application by a function that constructs the objective function.
For a typical cipher, this should not require more than half an hour of work for a
minimally experienced programmer.

If all d-variables are restricted to binary variables, as well as variables xqg up
to x33, the constraints ensure that the optimal solution for all other x;-variables
will be binary as well. Therefore, similar to Borghoff’s suggestion in [6], we might
solve an MILP program where only the d-variables and xy up to x33 are binary
variables, instead of a pure ILP program. We find that Borghoff’s observation can
give dramatic speed-ups in some cases: for 72 rounds, it takes 5,808.15 seconds
using an MILP, compared 342,747.78 seconds using a pure ILP. However, our
MILP program for 38 rounds takes longer: 75.68 seconds instead of 52.68 seconds.
Explaining this phenomenon seems to be a useful direction for future work.
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Table 1 — Minimum Number of Differentially Active S-boxes min(ky)
for N rounds of Enocoro-128v2

[N [min(ky)| [N[min(ky)| [N[min(ky)| [N][min(ky)| [N|min(ky)]
1 0 21 2 41 16 61 25 81 39
2 0 22 3 42 17 62 26 82 39
3 0 23 3 43 18 63 27 83 40
4 0 24 3 44 18 64 27 84 40
) 0 25 4 45 18 65 28 85 40
6 0 26 5 46| 19 66| 29 86| 41
7 0 27 7 47 20 67 30 87 42
8 0 28 8 48| 20 68| 30 88| 43
9 0 29 8 49 21 69 30 89 43
10 0 30 8 50| 22 70| 31 90| 44
11 0 31 8 51 22 71 32 91 44
12 0 32 9 92 22 72 34 92 45
13 1 33 9 53| 22 73] 35 93| 45
14 1 34 10 o4 22 74 35 94 46
15 1 35| 11 55| 22 75 36 95| 47
16 1 36| 12 56| 22 76| 37 96| 47
17 1 37| 13 57| 23 T 37
18 1 38 14 o8 23 78 38
19 1 39| 15 59| 24 79 38
20 2 40 15 60 24 80 38

5 Linear Cryptanalysis of Enocoro-128v2

We will use our technique to analyze an ideal variant of Enocoro-128v2 for linear
cryptanalysis. Similarly as for differential cryptanalysis, the real Enocoro-128v2
will have at least as many linearly active S-boxes as the idealized one, and therefore
can be used to prove a security bound.

5.1 Constructing the MILP Program

We now illustrate our technique by presenting the constraints for the first round
of the stream cipher Enocoro-128v2 for linear cryptanalysis. For the initial state,
let the linear mask vector for the buffer be (yo,y1,...,ys1), and for the state be
(y32,y33). Consider the three-forked branch, which has the state byte ag as the
input linear mask and buffer byte bs3; as one output linear mask. We obtain the first
new binary variable y34 as the other output vector. The input and output linear
mask vector for this three-forked branch are then yso and (ys1,ys4) respectively.
By introducing the binary dummy variable [y, the four constraints describing the
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Figure 4 — Linear Mask Vectors for Nine Operations in the First
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Figure 5 — Linear Mask Vectors Update during the Initialization of
Enocoro-128v2. The indices refer to y-variables.

three-forked branch can be described as follows:

Y31 + Y32 + y3a > 2lo
lo > ys1
lo > ys2
lo>ysa -

For the XOR operation, the two inputs and the output all have the same
linear mask. The bijectiveness of the S-box implies the linear mask at the output
will be non-zero if and only if the input mask is non-zero. Therefore, the linear
transformation L has an input linear mask vector of (ys4,y33), and an output linear
mask vector of (yss,yss). Using a new binary dummy variable /1, the constraints
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describing the L transformation are:

Y3a + Y33 +yss + Yse > 31,
li > ysa s
lh > yss
li > yss
l1 > yse -

As an Enocoro-128v2 round contains eight three-forked branch operations and one
linear transformation L, ten new binary variables ys4,y3s, - - - , Y43, as well as nine
binary dummy variables lg,(1,...,ls are introduced. Therefore, 4 -8 +5-1 = 37
constraints are required to describe the propagation of linear masks for the first
round (as well as any subsequent round) of Enocoro-128v2. The input and output
linear mask vectors for all nine operations in the first round are shown in Fig. 4.
The linear mask vector for the buffer and state after one round are

(y317y0ay1) Y37,Y3, 3 Y5,Y38,Y39,Y8, ", Y14, Y40, Y41, Y17, * 7y277y427y437y30)

and (yss, yse) respectively. They are shown in Fig. 5.

5.2 The Minimum Number of Active S-boxes for Linear Crypt-
analysis

Using the technique in the previous section, we can represent any number of rounds

of Enocoro-128v2. We now explain how to calculate the number of active S-boxes.

Let L; include all indices of the four variables representing the input linear mask

vector of S-boxes in the -th round (1 < ¢ < 96). We then obtain the following 96
sets:

Ly = {34,33,35,36} ,
Lo = {44, 36,45,46} |
L3 = {54,46,55,56} |,
Ly = {64,56,65,66} |,
Ls = {74,66,75,76} ,

Los = {984, 976,985,986} .

Let my be the number of active S-boxes for N rounds of Enocoro-128v2. If

JN: U Lj7

1<GEN
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then

mN:Zyj

JjE€JIN

will be the number of active S-boxes for N rounds of Enocoro-128v2. By minimiz-
ing the linear objective function my, we obtain the minimum number of linearly
active S-boxes for N rounds of Enocoro-128v2.

The maximum correlation amplitude of the 8-bit S-box of Enocoro-128v2 is
Cmax = 272. For the same reasons as for differential cryptanalysis, we limit the
number of IVs to 264, Let us denote the minimum number of active S-boxes by a.
From the limit on the number of Vs, we then find that resistance against linear
cryptanalysis requires [12, pp. 142-143]:

Cgl _ (272)0, < 2764/2 )

ax

This inequality is satisfied for a > 16. Therefore, if the number of linearly active
S-boxes is at least 16, Enocoro-128v2 can be considered to be resistant against
linear cryptanalysis (in both single-key and related-key settings).

If we solve the resulting MILP problem using CPLEX, we find that the mini-
mum number of active S-boxes is 18 for 61 rounds of Enocoro-128v2. This result
was obtained after 227.38 seconds. Therefore, we conclude that Enocoro-128v2
with 96 initialization rounds is secure against linear cryptanalysis (in both single-
key and related-key settings). Table 2 lists the minimum number of active S-boxes
for Enocoro-128v2.

6 Future Work

It is interesting to investigate how the internal parameters of CPLEX can be
fine-tuned to calculate bounds against linear and differential cryptanalysis in the
fastest possible time. If there are symmetries in the round function, these may be
used to speed up the search as well. Similarly, the attacker may improve a given
(suboptimal) lower bound for a particular cipher by clocking the round functions
forward or backward in order to obtain a lower number of S-boxes. To obtain
a rough lower bound for a large number of rounds, the “split approach” (see for
example [2]) may be used. For example, if r rounds of a cipher contain at least
a active S-boxes, then kr rounds of a cipher must contain at least ka active S-
boxes. It is useful to explore how these observations can be applied when CPLEX
takes a very long time to execute. Otherwise, the shorter solving time does not
compensate for the additional time to construct the program. For ILP programs
with a very long execution time, it may be better to calculate the minimum number
of active S-boxes using a different technique (e.g. [2]).

The technique in this paper is quite general, and may also be used for trun-
cated differentials, higher-order differentials, impossible differentials, saturation
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Table 2 — Minimum Number of Linearly Active S-boxes min(my)
for N rounds of Enocoro-128v2

[N|min(my)| [N]min(my)| [N[min(my)| [N|min(my)]| [N]min(my)]
1 0 21 0 41 6 61 18 81 24
2 0 22 0 42 9 62 18 82 27
3 0 23 0 43 9 63 18 83 27
4 0 24 0 44 9 64 18 84 27
) 0 25 0 45 12 65 18 85 27
6 0 26 0 46 12 66 18 86 27
7 0 27 0 47 12 67 18 87 27
8 0 28 0 48 12 68 21 88 27
9 0 29 0 49 12 69 21 89 27
10 0 30 0 50 12 70 21 90 27
11 0 31 0 51 12 71 21 91 27
12 0 32 0 52 15 72 21 92 27
13 0 33 3 53 15 73 21 93 30
14 0 34 6 54 15 74 21 94 30
15 0 35 6 55 15 75 21 95 33
16 0 36 6 56 15 76 24 96 33
17 0 37 6 57 15 T 24
18 0 38 6 58 15 78 24
19 0 39 6 59 15 79 24
20 0 40 6 60 15 80 24

attacks,... It can also be applied to other ciphers constructed using S-box oper-
ations, linear permutation layers, three-forked branches and/or XOR operations.
We leave the exploration of these topics to future work as well.

7 Conclusion

In this paper, we introduced a simple technique to calculate the security of many
ciphers against linear and differential cryptanalysis. The only requirement is that
the cipher is composed of a combination of S-box operations, linear permutation
layers and/or XOR operations. Our technique involves writing a simple program
to generate a mixed-integer linear programming (MILP) problem. The objective
function of the MILP program is the number of linearly or differentially active S-
boxes, which we want to minimize. This MILP problem can then easily be solved
using an off-the-shelf optimization package, for example CPLEX. The result can
be used to prove the security of a cryptosystem against linear and differential
cryptanalysis.

Our technique can be applied to a wide variety of cipher constructions. As an
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example, we apply the technique in this paper to the stream cipher Enocoro-128v2.
We prove that for Enocoro-128v2 38 rounds are sufficient for security against dif-
ferential cryptanalysis, and 61 rounds against linear cryptanalysis. These results
are valid both in single-key and related-key models. As Enocoro-128v2 consists of
96 initialization rounds, this proves the security of Enocoro-128v2 against linear
and differential cryptanalysis.

We would like to point out that only little programming is required to obtain
this result. A minimally experienced programmer can modify the reference imple-
mentation of a cipher, in order to generate the required MILP program in about
half an hour. In the case of Enocoro-128v2, it takes CPLEX less than one minute
on a 24-core Intel Xeon X5670 processor to prove security against differential crypt-
analysis, and less than four minutes to prove security against linear cryptanalysis.
We note that because very little programming is required, both the time spent on
cryptanalysis and the possibility of making errors are greatly reduced.
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A Number of Active S-boxes for AES

The four-round propagation theorem of AES [12] proves that the number of active
S-boxes in a differential or linear characteristic of four AES rounds is at least 25.
Combined with the properties of the AES S-box, this result was used in the AES
design document to prove the resistance against linear and differential attacks. In
this section, we illustrate our technique by applying it to the block cipher AES.
We not only confirm the four-round propagation theorem, but also determine the
minimum number of active S-boxes for up to 14 rounds in Table 4.

An AES round update consists of four operations: AddRoundKey (AR), Sub-
Bytes (SB), ShiftRows (SR) and MixColumns (MC). The update of the first AES
round is shown in Table 3. Every variable corresponds to a byte of the AES state.
The variable is 1 if the difference is non-zero, and 0 if the difference is zero. All
variables corresponding to the inputs of the SubByte operations are summed in the
objective function, this corresponds to the number of active S-boxes. The linear
function used in the MixColumns operation has a differential as well as a linear
branch number of 5.

A program was written in C to generate the constraints for this optimization
problem in the CPLEX LP format. To illustrate the simplicity of our technique,
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we provide this program (including source code comments) below in full. None of
the optimization problems in Table 4 took longer than 0.40 seconds to solve, using
only a single core of our 24-core Intel Xeon X5670 processor.

Table 3 — The Variables in the First Round Update of AES

To T4 T T12 To T4 T8 T12 To T4 T8 T12 T16 T20 T24 T28
T1Ts X9 T13 §§ T1Ts5 T9 T13 T5 T9 T13 T1 M X17 T21 T25 T29
X2 Te T10 T14 T2 T6 10 T14 | —7 | Ti0 T14 T2 T ‘g 18 T22 T26 T30
T3 X7 T11 T15 T3 X7 T11 T15 T15 T3 T7 T11l T19 T23 27 T31

Table 4 — Minimum Number of Differentially or Linearly Active S-
boxes min(ky) for N rounds of AES

N 112 (34|56 |7 |89 |10(11|12(13|14
min(ky) 11519 25{26|30(34|50|51(55|59]|75|76 |80

#include <stdio.h>

int i,j,r;

const int ROUNDS = 4; /* number of rounds */

int next = 0; /* next unused state variable index */
int dummy = 0; /* next unused dummy variable index */

void ShiftRows(int al[4][4]) {
int tmpl[4];
for(i = 1; i < 4; i++) {
for(j = 0; j < 4; j++) tmp[jl = alil[(G + i) % 4];
for(j = 0; j < 4; j++) alil[j] = tmp[j];
}
}
void MixColumns(int a[4][4]) {
for(j = 0; j < 4; j++) {
for (1 = 0; i < 4; i++) printf("x¥%i + ",alil[j1);
for (i = 0; i < 3; i++) printf("x¥%i + ",next+i);
printf("x%i - 5 d%i >= O\n",next+3,dummy) ;

for(i = 0; i < 4; i++)

printf("d%i - x%i >= O\n",dummy,al[i] [j1);
for(i = 0; i < 4; i++)

printf("d%i - x%i >= O\n",dummy,al[i] [jl=next++);
dummy++;
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int main() {
int a[4]1[4]; /* the bytes of the AES state */
for (i = 0; i < 4; i++)
for (j = 0; j < 4; j++)
al[il [j] = next++; /* initialize variable indices */

printf ("Minimize\n"); /* print objective function */
for (i = 0; i < ROUNDS*16-1; i++) printf("x%i + ",i);
printf ("x%i\n\n" ,ROUNDS*16-1) ;

printf("Subject To\n"); /* round function constraints */
for (r = 0; r<ROUNDS; r++) { ShiftRows(a); MixColumns(a); }

/* at least one S-box must be active */
for (i = 0; i < ROUNDS*16-1; i++) printf("x%i + ",i);
printf ("x%i >= 1\n\n",ROUNDS*16-1);

printf("Binary\n"); /* binary constraints */
for (i = 0; i < 16; i++) printf("x%i\n",i);
for (i = 0; i < dummy; i++) printf("d%i\n",i);
printf ("End\n");

return 0O;
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