

Introduction
Three Easy, Automated Techniques

Tools for Cryptography
Conclusion

Algebraic Attacks: Definition

Represent cryptographic primitive as system of equations
Use equation solver to retrieve key

SAT solvers
MiniSat2, CryptoMiniSat,...

Gröbner basis method
Buchberger’s algorithm, F4, F5,...

Mixed Integer Linear Programming (MILP)
CPLEX, SYMPHONY,...

Hopefully detects inherent structure, and
solves equations faster than brute force!

4 / 39

Introduction
Three Easy, Automated Techniques

Tools for Cryptography
Conclusion

Algebraic Attacks: Advantages and Disadvantages

Algebraic attacks on symmetric-key ciphers
Biggest disadvantages:

Can only find practical attacks, no high-complexity attacks

5 / 39

Introduction
Three Easy, Automated Techniques

Tools for Cryptography
Conclusion

Algebraic Attacks: Advantages and Disadvantages

Algebraic attacks on symmetric-key ciphers
Biggest disadvantages:

Can only find practical attacks, no high-complexity attacks
Execution time (and memory requirements): unpredictable

5 / 39

Introduction
Three Easy, Automated Techniques

Tools for Cryptography
Conclusion

Algebraic Attacks: Advantages and Disadvantages

Algebraic attacks on symmetric-key ciphers
Biggest disadvantages:

Can only find practical attacks, no high-complexity attacks
Execution time (and memory requirements): unpredictable
“Not a single proper block cipher has been broken using
pure algebraic techniques faster than with other
techniques.” (Albrecht)

5 / 39

Introduction
Three Easy, Automated Techniques

Tools for Cryptography
Conclusion

Algebraic Attacks: Advantages and Disadvantages

Algebraic attacks on symmetric-key ciphers
Biggest disadvantages:

Can only find practical attacks, no high-complexity attacks
Execution time (and memory requirements): unpredictable
“Not a single proper block cipher has been broken using
pure algebraic techniques faster than with other
techniques.” (Albrecht)

Biggest advantages:
“Black box” technique, no crypto knowledge required

5 / 39

Introduction
Three Easy, Automated Techniques

Tools for Cryptography
Conclusion

Algebraic Attacks: Advantages and Disadvantages

Algebraic attacks on symmetric-key ciphers
Biggest disadvantages:

Can only find practical attacks, no high-complexity attacks
Execution time (and memory requirements): unpredictable
“Not a single proper block cipher has been broken using
pure algebraic techniques faster than with other
techniques.” (Albrecht)

Biggest advantages:
“Black box” technique, no crypto knowledge required
Can work with very few plaintext-ciphertext pairs

5 / 39

Introduction
Three Easy, Automated Techniques

Tools for Cryptography
Conclusion

Algebraic Attacks: Advantages and Disadvantages

Algebraic attacks on symmetric-key ciphers
Biggest disadvantages:

Can only find practical attacks, no high-complexity attacks
Execution time (and memory requirements): unpredictable
“Not a single proper block cipher has been broken using
pure algebraic techniques faster than with other
techniques.” (Albrecht)

Biggest advantages:
“Black box” technique, no crypto knowledge required
Can work with very few plaintext-ciphertext pairs
Useful to break extremely weak ciphers: Crypto-1 in 40s,
HiTag2 in 6.5h on one Xeon E5345 @ 2.33GHz (Soos)

5 / 39

Introduction
Three Easy, Automated Techniques

Tools for Cryptography
Conclusion

Automated Techniques: Still Useful

Tool to construct statistical and MitM attacks
Therefore, program execution time: not so important

6 / 39

Introduction
Three Easy, Automated Techniques

Tools for Cryptography
Conclusion

Automated Techniques: Still Useful

Tool to construct statistical and MitM attacks
Therefore, program execution time: not so important

Program: executed only once

6 / 39

Introduction
Three Easy, Automated Techniques

Tools for Cryptography
Conclusion

Automated Techniques: Still Useful

Tool to construct statistical and MitM attacks
Therefore, program execution time: not so important

Program: executed only once
More time spent on: coding, debugging, optimizing, parallel
implementation, verifying,...
Verifying correctness: very difficult

6 / 39

Introduction
Three Easy, Automated Techniques

Tools for Cryptography
Conclusion

Automated Techniques: Still Useful

Tool to construct statistical and MitM attacks
Therefore, program execution time: not so important

Program: executed only once
More time spent on: coding, debugging, optimizing, parallel
implementation, verifying,...
Verifying correctness: very difficult
Programmer’s time: costs more than CPU time!

6 / 39

Introduction
Three Easy, Automated Techniques

Tools for Cryptography
Conclusion

Automated Techniques: Still Useful

Tool to construct statistical and MitM attacks
Therefore, program execution time: not so important

Program: executed only once
More time spent on: coding, debugging, optimizing, parallel
implementation, verifying,...
Verifying correctness: very difficult
Programmer’s time: costs more than CPU time!

More important:
Easy to program
Easy to verify
Easy to parallelize

6 / 39

Introduction
Three Easy, Automated Techniques

Tools for Cryptography
Conclusion

Goal of this lecture

Use three easy, automated techniques
MILP programming
SAT solvers
Regular expressions

as tools to construct attacks
... and start breaking ciphers today!

7 / 39

Introduction
Three Easy, Automated Techniques

Tools for Cryptography
Conclusion

MILP Programming
SAT Solvers
Regular Expressions

Outline

1 Introduction

2 Three Easy, Automated Techniques
MILP Programming
SAT Solvers
Regular Expressions

3 Tools for Cryptography

4 Conclusion

8 / 39

Introduction
Three Easy, Automated Techniques

Tools for Cryptography
Conclusion

MILP Programming
SAT Solvers
Regular Expressions

Differential Cryptanalysis

Differential characteristic

a1

d1

b1

c1

a2

d2

b2

c2

Δb

Δc

Δd

Δa

9 / 39

Introduction
Three Easy, Automated Techniques

Tools for Cryptography
Conclusion

MILP Programming
SAT Solvers
Regular Expressions

Differential Cryptanalysis: S-box

a

S(a)

S

a ⊕Δα

S(a ⊕Δα)

S

Δα

= Δβ?

Differential Probability DP(Δα → Δβ):

#{0 ≤ a < 28 : S(a)⊕ S(a ⊕Δα) = Δβ}

28

Max. diff. prob. (MDP): 4/256 = 2−6

AES: only component that is
non-linear in GF(28)

Non-active S-box: DP(0 → 0) = 1

Count active S-boxes!

10 / 39

Introduction
Three Easy, Automated Techniques

Tools for Cryptography
Conclusion

MILP Programming
SAT Solvers
Regular Expressions

Representation of variables

Every pair of bytes is “shrunk” to one bit xi :
xi = 0 if the bytes are the same
xi = 1 if the bytes are different

11 / 39

Introduction
Three Easy, Automated Techniques

Tools for Cryptography
Conclusion

MILP Programming
SAT Solvers
Regular Expressions

Representation of variables

Every pair of bytes is “shrunk” to one bit xi :
xi = 0 if the bytes are the same
xi = 1 if the bytes are different

Note: simplifies the analysis!
Our results prove lower bounds,
but characteristics may contain a contradiction

11 / 39

Introduction
Three Easy, Automated Techniques

Tools for Cryptography
Conclusion

MILP Programming
SAT Solvers
Regular Expressions

Representation of variables

Every pair of bytes is “shrunk” to one bit xi :
xi = 0 if the bytes are the same
xi = 1 if the bytes are different

Note: simplifies the analysis!
Our results prove lower bounds,
but characteristics may contain a contradiction

Next slides: focus on AES
but technique can analyze any cipher based on XORs,
three-forked branches, MDS operations,...
Details: see Mouha et al., Inscrypt 2011

11 / 39

Introduction
Three Easy, Automated Techniques

Tools for Cryptography
Conclusion

MILP Programming
SAT Solvers
Regular Expressions

One Round of AES









x0 x4 x8 x12
x1 x5 x9 x13
x2 x6 x10 x14
x3 x7 x11 x15









AR+SB
−−−−−−→









x0 x4 x8 x12
x1 x5 x9 x13
x2 x6 x10 x14
x3 x7 x11 x15









SR
−−−→









x0 x4 x8 x12
x5 x9 x13 x1
x10 x14 x2 x6
x15 x3 x7 x11









MC
−−−−−−→









x16 x20 x24 x28
x17 x21 x25 x29
x18 x22 x26 x30
x19 x23 x27 x31









12 / 39

Introduction
Three Easy, Automated Techniques

Tools for Cryptography
Conclusion

MILP Programming
SAT Solvers
Regular Expressions

MixColumns

MDS

x0

x5

x10

x15

x16

x17

x18

x19

MDS Property:

x0 + x5 + x10 + x15 +
x16 + x17 + x18 + x19 ≥ 5

or

x0 = x5 = x10 = x15 =
x16 = x17 = x18 = x19 = 0

13 / 39

Introduction
Three Easy, Automated Techniques

Tools for Cryptography
Conclusion

MILP Programming
SAT Solvers
Regular Expressions

MixColumns

MDS

x0

x5

x10

x15

x16

x17

x18

x19

MDS Property:

x0 + x5 + x10 + x15 +
x16 + x17 + x18 + x19 ≥ 5d

and

d = max(x0 , x5 , x10 , x15 ,

x16 , x17 , x18 , x19)

14 / 39

Introduction
Three Easy, Automated Techniques

Tools for Cryptography
Conclusion

MILP Programming
SAT Solvers
Regular Expressions

MixColumns

MDS

x0

x5

x10

x15

x16

x17

x18

x19

MDS Property:

x0 + x5 + x10 + x15 +
x16 + x17 + x18 + x19 ≥ 5d

and

d ≥ x0, d ≥ x5, d ≥ x10, d ≥ x15,
d ≥ x16, d ≥ x17, d ≥ x18, d ≥ x19

15 / 39

Introduction
Three Easy, Automated Techniques

Tools for Cryptography
Conclusion

MILP Programming
SAT Solvers
Regular Expressions

Mixed-Integer Linear Programming

Mimimize
Sum of S-box variables

Subject To
9 equations for every MixColumns step (+1 dummy variable)
(SubBytes, ShiftRows, add key: no equations/variables)
Sum of plaintext variables ≥ 1

Binary
All variables / All input variables

End

16 / 39

Introduction
Three Easy, Automated Techniques

Tools for Cryptography
Conclusion

MILP Programming
SAT Solvers
Regular Expressions

Single-key AES: Bounds

Rounds 1 2 3 4 5 6 7
Min. # active S-boxes 1 5 9 25 26 30 34

Rounds 8 9 10 11 12 13 14
Min. # active S-boxes 50 51 55 59 75 76 80

Using the IBM ILOG CPLEX optimizer
Free for academic use

Execution time
no problem takes longer than 0.40 s (Intel Xeon X5670 @
2.93GHz)

17 / 39

Introduction
Three Easy, Automated Techniques

Tools for Cryptography
Conclusion

MILP Programming
SAT Solvers
Regular Expressions

Related-key AES: Strategy

Also one xi -variable per key byte, (xi = 1 iff. bytes different)

18 / 39

Introduction
Three Easy, Automated Techniques

Tools for Cryptography
Conclusion

MILP Programming
SAT Solvers
Regular Expressions

Related-key AES: Strategy

Also one xi -variable per key byte, (xi = 1 iff. bytes different)
Equations for every XOR operation:

xin2xin1

xout

xin1 + xin2 + xout ≥ 2d
d ≥ xin1

d ≥ xin2

d ≥ xout

18 / 39

Introduction
Three Easy, Automated Techniques

Tools for Cryptography
Conclusion

MILP Programming
SAT Solvers
Regular Expressions

Related-key AES: Bounds

Minimum number of active S-boxes:

Rounds 1 2 3 4 5 6 7
AES-128 0 1 3 9 11 13 15
AES-192 0 0 1 3 4 5 11
AES-256 0 0 1 3 3 5 5

Rounds 8 9 10 11 12 13 14
AES-128 21 23 25 27 33 35 37
AES-192 13 16 19 19 20 24 25
AES-256 10 14 16 18 20 22 24

19 / 39

Introduction
Three Easy, Automated Techniques

Tools for Cryptography
Conclusion

MILP Programming
SAT Solvers
Regular Expressions

Related-key AES: Execution Time

24-core Intel Xeon X5670 @ 2.93GHz
System used concurrently by at least 5 other people

... execution times are upper bounds

20 / 39

Introduction
Three Easy, Automated Techniques

Tools for Cryptography
Conclusion

MILP Programming
SAT Solvers
Regular Expressions

Related-key AES: Execution Time

24-core Intel Xeon X5670 @ 2.93GHz
System used concurrently by at least 5 other people

... execution times are upper bounds

Bounds for full AES: all less than one minute
except 14-round AES-256: bound in 69.84 s

20 / 39

Introduction
Three Easy, Automated Techniques

Tools for Cryptography
Conclusion

MILP Programming
SAT Solvers
Regular Expressions

Comparison to other work

Biryukov, Nikolić (EUROCRYPT 2010, SAC 2010)
determine byte differences, not just zero/non-zero
difference

21 / 39

Introduction
Three Easy, Automated Techniques

Tools for Cryptography
Conclusion

MILP Programming
SAT Solvers
Regular Expressions

Comparison to other work

Biryukov, Nikolić (EUROCRYPT 2010, SAC 2010)
determine byte differences, not just zero/non-zero
difference
AES-192, 11 rounds:

Biryukov, Nikolić: 31 active S-boxes, computation takes
“weeks”

21 / 39

Introduction
Three Easy, Automated Techniques

Tools for Cryptography
Conclusion

MILP Programming
SAT Solvers
Regular Expressions

Comparison to other work

Biryukov, Nikolić (EUROCRYPT 2010, SAC 2010)
determine byte differences, not just zero/non-zero
difference
AES-192, 11 rounds:

Biryukov, Nikolić: 31 active S-boxes, computation takes
“weeks”
Our result: 19 active S-boxes, found in 33.36 s

21 / 39

Introduction
Three Easy, Automated Techniques

Tools for Cryptography
Conclusion

MILP Programming
SAT Solvers
Regular Expressions

Comparison to other work

Biryukov, Nikolić (EUROCRYPT 2010, SAC 2010)
determine byte differences, not just zero/non-zero
difference
AES-192, 11 rounds:

Biryukov, Nikolić: 31 active S-boxes, computation takes
“weeks”
Our result: 19 active S-boxes, found in 33.36 s

xAES-128, 10 rounds:
Nikolić: more than 22 active S-boxes (“a few hours on a
single core”) using split method

21 / 39

Introduction
Three Easy, Automated Techniques

Tools for Cryptography
Conclusion

MILP Programming
SAT Solvers
Regular Expressions

Comparison to other work

Biryukov, Nikolić (EUROCRYPT 2010, SAC 2010)
determine byte differences, not just zero/non-zero
difference
AES-192, 11 rounds:

Biryukov, Nikolić: 31 active S-boxes, computation takes
“weeks”
Our result: 19 active S-boxes, found in 33.36 s

xAES-128, 10 rounds:
Nikolić: more than 22 active S-boxes (“a few hours on a
single core”) using split method
Our result: 22 active S-boxes (2.68 s, single core) using
split method

21 / 39

Introduction
Three Easy, Automated Techniques

Tools for Cryptography
Conclusion

MILP Programming
SAT Solvers
Regular Expressions

Comparison to other work

Biryukov, Nikolić (EUROCRYPT 2010, SAC 2010)
determine byte differences, not just zero/non-zero
difference
AES-192, 11 rounds:

Biryukov, Nikolić: 31 active S-boxes, computation takes
“weeks”
Our result: 19 active S-boxes, found in 33.36 s

xAES-128, 10 rounds:
Nikolić: more than 22 active S-boxes (“a few hours on a
single core”) using split method
Our result: 22 active S-boxes (2.68 s, single core) using
split method
Not using split method: 25 active S-boxes (4 minutes on a
single core, or 31.80 s using 24 cores)

21 / 39

Introduction
Three Easy, Automated Techniques

Tools for Cryptography
Conclusion

MILP Programming
SAT Solvers
Regular Expressions

How to program

Complex bookkeeping of variables is unnecessary!
Stay as close as possible to the original C code

22 / 39

Introduction
Three Easy, Automated Techniques

Tools for Cryptography
Conclusion

MILP Programming
SAT Solvers
Regular Expressions

How to program

Complex bookkeeping of variables is unnecessary!
Stay as close as possible to the original C code

int next: index i for next unused xi
int dummy: index j for next unused dj

22 / 39

Introduction
Three Easy, Automated Techniques

Tools for Cryptography
Conclusion

MILP Programming
SAT Solvers
Regular Expressions

How to program

Complex bookkeeping of variables is unnecessary!
Stay as close as possible to the original C code

int next: index i for next unused xi
int dummy: index j for next unused dj
remove round constants

22 / 39

Introduction
Three Easy, Automated Techniques

Tools for Cryptography
Conclusion

MILP Programming
SAT Solvers
Regular Expressions

How to program

Complex bookkeeping of variables is unnecessary!
Stay as close as possible to the original C code

int next: index i for next unused xi
int dummy: index j for next unused dj
remove round constants
intercept XOR, MixColumns: generate equations, increase
next and dummy

22 / 39

Introduction
Three Easy, Automated Techniques

Tools for Cryptography
Conclusion

MILP Programming
SAT Solvers
Regular Expressions

How to program

Complex bookkeeping of variables is unnecessary!
Stay as close as possible to the original C code

int next: index i for next unused xi
int dummy: index j for next unused dj
remove round constants
intercept XOR, MixColumns: generate equations, increase
next and dummy
intercept S-box: keep track of indices for objective function

22 / 39

Introduction
Three Easy, Automated Techniques

Tools for Cryptography
Conclusion

MILP Programming
SAT Solvers
Regular Expressions

How to program

Complex bookkeeping of variables is unnecessary!
Stay as close as possible to the original C code

int next: index i for next unused xi
int dummy: index j for next unused dj
remove round constants
intercept XOR, MixColumns: generate equations, increase
next and dummy
intercept S-box: keep track of indices for objective function
More details: see source code

22 / 39

Introduction
Three Easy, Automated Techniques

Tools for Cryptography
Conclusion

MILP Programming
SAT Solvers
Regular Expressions

How to program

Complex bookkeeping of variables is unnecessary!
Stay as close as possible to the original C code

int next: index i for next unused xi
int dummy: index j for next unused dj
remove round constants
intercept XOR, MixColumns: generate equations, increase
next and dummy
intercept S-box: keep track of indices for objective function
More details: see source code

To debug/visualize: print indices i of internal states xi and
fill in solution

22 / 39

Introduction
Three Easy, Automated Techniques

Tools for Cryptography
Conclusion

MILP Programming
SAT Solvers
Regular Expressions

Related-key AES: How to program (2)

Reference implementation (rijndael-alg-ref.c)
assume 256-bit key, 10 rounds

Implementation needs 128 · 11 = 1408 key bits
but rounds up: 256 · 6 = 1536 key bits calculated

Result: unnecessary S-box lookups, and wrong bounds!
solution: reorder loops and terminate sooner

23 / 39

Introduction
Three Easy, Automated Techniques

Tools for Cryptography
Conclusion

MILP Programming
SAT Solvers
Regular Expressions

Outline

1 Introduction

2 Three Easy, Automated Techniques
MILP Programming
SAT Solvers
Regular Expressions

3 Tools for Cryptography

4 Conclusion

24 / 39

Introduction
Three Easy, Automated Techniques

Tools for Cryptography
Conclusion

MILP Programming
SAT Solvers
Regular Expressions

SAT solvers: Introduction

SAT solvers: input in Conjunctive Normal Form (CNF)
CNF = the ‘AND’ of a set of ‘OR’-clauses
Every variable = 1 bit
CryptoMiniSAT: also understands XOR clauses

Example of CNF:
(x1 ∨ x̄5 ∨ x4)∧

(x̄1 ∨ x5 ∨ x3 ∨ x4)∧

(x̄3 ∨ x̄4)

Conversion from C code to CNF needed
+ convert back to interpret solution

25 / 39

Introduction
Three Easy, Automated Techniques

Tools for Cryptography
Conclusion

MILP Programming
SAT Solvers
Regular Expressions

SAT solvers: to CNF and back

Custom approach: specific to certain (families of) ciphers
e.g. Grain of Salt (Soos): stream ciphers based on NLFSRs

26 / 39

Introduction
Three Easy, Automated Techniques

Tools for Cryptography
Conclusion

MILP Programming
SAT Solvers
Regular Expressions

SAT solvers: to CNF and back

Custom approach: specific to certain (families of) ciphers
e.g. Grain of Salt (Soos): stream ciphers based on NLFSRs

Using software to synthesize hardware circuits
e.g. CryptLogVer (Morawiecki et al.): Altera Quartus II +
simple postprocessing

26 / 39

Introduction
Three Easy, Automated Techniques

Tools for Cryptography
Conclusion

MILP Programming
SAT Solvers
Regular Expressions

SAT solvers: to CNF and back

Custom approach: specific to certain (families of) ciphers
e.g. Grain of Salt (Soos): stream ciphers based on NLFSRs

Using software to synthesize hardware circuits
e.g. CryptLogVer (Morawiecki et al.): Altera Quartus II +
simple postprocessing

Tool to convert C code to CNF and back
e.g. C32SAT (Brummayer)

26 / 39

Introduction
Three Easy, Automated Techniques

Tools for Cryptography
Conclusion

MILP Programming
SAT Solvers
Regular Expressions

HAS-V Step Function

Ai Bi Ci Di Ei

Ai+1 Bi+1 Ci+1 Di+1 Ei+1

f

Ki

Wi

<<< S

<<<

 2

27 / 39

Introduction
Three Easy, Automated Techniques

Tools for Cryptography
Conclusion

MILP Programming
SAT Solvers
Regular Expressions

HAS-V Step Function: Local Collisions

W
t
[0] W

t+1
[S] W

t+2
[0] W

t+3
[30] W

t+4
[30] W

t+5
[30]

A
t
[0] A

t+1
[S] A

t+2
[0] A

t+3
[30] A

t+4
[30] A

t+5
[30]

 B
t+1

[0]

 C
t+2

[30]

 D
t+3

[30]

 E
t+4

[30]

50%

50%

50%

 50% (f
1
,f

3
)

100% (f
2
)

28 / 39

Introduction
Three Easy, Automated Techniques

Tools for Cryptography
Conclusion

MILP Programming
SAT Solvers
Regular Expressions

HAS-V: Using C32SAT

Chabaud and Joux: local collision = perturbation +
correction(s)

Message words are reused: one message difference Wi
introduces many perturbations!

29 / 39

Introduction
Three Easy, Automated Techniques

Tools for Cryptography
Conclusion

MILP Programming
SAT Solvers
Regular Expressions

HAS-V: Using C32SAT

Chabaud and Joux: local collision = perturbation +
correction(s)

Message words are reused: one message difference Wi
introduces many perturbations!

For HAS-V:
Step 0: Msg. diff. W0 = Perturb. P0 (32-bit word)
Step 1: Msg. diff. W1 = Perturb. P1 ⊕ Corr. (P0 ≪ 11)

29 / 39

Introduction
Three Easy, Automated Techniques

Tools for Cryptography
Conclusion

MILP Programming
SAT Solvers
Regular Expressions

HAS-V: Using C32SAT

Chabaud and Joux: local collision = perturbation +
correction(s)

Message words are reused: one message difference Wi
introduces many perturbations!

For HAS-V:
Step 0: Msg. diff. W0 = Perturb. P0 (32-bit word)
Step 1: Msg. diff. W1 = Perturb. P1 ⊕ Corr. (P0 ≪ 11)
Step 2: Msg. diff. W2 = Perturb. P2 ⊕ Corr. (P1 ≪ 7)

⊕ Corr. (P0∧D0)
... (W0, W1,... are reused in later steps)

Dummy variable D0: indicates if Boolean function f
absorbs or propagates difference

29 / 39

Introduction
Three Easy, Automated Techniques

Tools for Cryptography
Conclusion

MILP Programming
SAT Solvers
Regular Expressions

HAS-V: C32SAT results

Processor: Intel Core 2 Duo E8400 @ 3GHz

If Pi ∈ {00..002,11..112}
Best solution: 192 local collisions for 60 steps (41s)
No solution with fewer than 192 local collisions (42s)

30 / 39

Introduction
Three Easy, Automated Techniques

Tools for Cryptography
Conclusion

MILP Programming
SAT Solvers
Regular Expressions

HAS-V: C32SAT results

Processor: Intel Core 2 Duo E8400 @ 3GHz

If Pi ∈ {00..002,11..112}
Best solution: 192 local collisions for 60 steps (41s)
No solution with fewer than 192 local collisions (42s)

If Pi ∈ {00..002,01..012,10..102,11..112}
Best solution: 144 local collisions for 60 steps (3m 14s)
No solution with fewer than 144 local collisions (11m 10s)

30 / 39

Introduction
Three Easy, Automated Techniques

Tools for Cryptography
Conclusion

MILP Programming
SAT Solvers
Regular Expressions

HAS-V: C32SAT results

Processor: Intel Core 2 Duo E8400 @ 3GHz

If Pi ∈ {00..002,11..112}
Best solution: 192 local collisions for 60 steps (41s)
No solution with fewer than 192 local collisions (42s)

If Pi ∈ {00..002,01..012,10..102,11..112}
Best solution: 144 local collisions for 60 steps (3m 14s)
No solution with fewer than 144 local collisions (11m 10s)

More details: my Master’s thesis (only in Dutch)

30 / 39

Introduction
Three Easy, Automated Techniques

Tools for Cryptography
Conclusion

MILP Programming
SAT Solvers
Regular Expressions

Outline

1 Introduction

2 Three Easy, Automated Techniques
MILP Programming
SAT Solvers
Regular Expressions

3 Tools for Cryptography

4 Conclusion

31 / 39

Introduction
Three Easy, Automated Techniques

Tools for Cryptography
Conclusion

MILP Programming
SAT Solvers
Regular Expressions

Regular Expressions: Introduction

Regular Expressions: to match patterns in strings
Text editor’s “Find” or ”Find/Replace”, but on steroids

Included in several programming languages
Java, C++11, Apple’s Objective-C, C#, PHP, VB.NET,
Python, Perl, JavaScript,...

32 / 39

Introduction
Three Easy, Automated Techniques

Tools for Cryptography
Conclusion

MILP Programming
SAT Solvers
Regular Expressions

Regular Expressions: Introduction

Regular Expressions: to match patterns in strings
Text editor’s “Find” or ”Find/Replace”, but on steroids

Included in several programming languages
Java, C++11, Apple’s Objective-C, C#, PHP, VB.NET,
Python, Perl, JavaScript,...

32 / 39

Introduction
Three Easy, Automated Techniques

Tools for Cryptography
Conclusion

MILP Programming
SAT Solvers
Regular Expressions

Regular Expressions: Notation

x character x
. any character
[ac] character a or c
[^a-c] any character except a, b or c

e.g. d , A, 9,...
([a-c]) save match for later use
x* zero or more x ’s
x+ one or more x ’s
x? zero or one x ’s
x{m} exactly m x ’s
x{m,} at least m x ’s
x{m,n} at least m, but at most n x ’s

33 / 39

Introduction
Three Easy, Automated Techniques

Tools for Cryptography
Conclusion

MILP Programming
SAT Solvers
Regular Expressions

Meet-in-the-Middle Attack on XTEA

XTEA: 64 rounds, 4 subkeys
One subkey used in every round

Round key order as a string:
03122130001322310010233201112033
02112130031221310013223201102332

Meet-in-the-middle attack on 23 rounds
First and last rounds: one subkey is not used
Middle rounds: all keys can be used, max. 15 rounds
Details: Sekar, Mouha, Velichkov, Preneel, CT-RSA 2010

Regular expression?

34 / 39

Introduction
Three Easy, Automated Techniques

Tools for Cryptography
Conclusion

MILP Programming
SAT Solvers
Regular Expressions

Meet-in-the-Middle Attack on XTEA

XTEA: 64 rounds, 4 subkeys
One subkey used in every round

Round key order as a string:
03122130001322310010233201112033
02112130031221310013223201102332

Meet-in-the-middle attack on 23 rounds
First and last rounds: one subkey is not used
Middle rounds: all keys can be used, max. 15 rounds
Details: Sekar, Mouha, Velichkov, Preneel, CT-RSA 2010

[^0]*.{1,15}[^0]*,

35 / 39

Introduction
Three Easy, Automated Techniques

Tools for Cryptography
Conclusion

MILP Programming
SAT Solvers
Regular Expressions

Meet-in-the-Middle Attack on XTEA

XTEA: 64 rounds, 4 subkeys
One subkey used in every round

Round key order as a string:
03122130001322310010233201112033
02112130031221310013223201102332

Meet-in-the-middle attack on 23 rounds
First and last rounds: one subkey is not used
Middle rounds: all keys can be used, max. 15 rounds
Details: Sekar, Mouha, Velichkov, Preneel, CT-RSA 2010

[^0]*.{1,15}[^0]*, [^1]*.{1,15}[^1]*,
[^2]*.{1,15}[^2]*, [^3]*.{1,15}[^3]*

36 / 39

Introduction
Three Easy, Automated Techniques

Tools for Cryptography
Conclusion

MILP Programming
SAT Solvers
Regular Expressions

1 # ! / usr / b in / p e r l
2

3 # XTEA key schedule
4 $x = " 03122130001322310010233201112033 " .
5 " 02112130031221310013223201102332 " ;
6

7 # subkey $ i i s excluded in the outer rounds
8 f o r ($ i =0; $ i <4; $ i ++) {
9 wh i le ($x =~ / ([^ $ i] ∗ . { 1 , 1 5 } [^ $ i] ∗) / g) {

10 i f (l eng th ($1) >= 23) { # show only 23−round a t tacks
11 p r i n t leng th ($1) , "−round a t tack : " , $1 ,
12 " (rounds : " , $− [1]+1 , "−" , $ + [1] , ") \ n " ;
13 }
14 pos ($x) = $− [1]+1; # matches may over lap
15 }
16 }

37 / 39

Introduction
Three Easy, Automated Techniques

Tools for Cryptography
Conclusion

ECRYPT II Tools for Cryptography

Research papers should be verifiable
... releasing source code is therefore crucial!

ECRYPT II Tools for Cryptography
http://www.ecrypt.eu.org/tools

Currently 16 tools listed
Tools used in this lecture will be added today
Other new submissions are very welcome!

38 / 39

Introduction
Three Easy, Automated Techniques

Tools for Cryptography
Conclusion

Conclusion

If we use an automated technique,
The execution time is unpredictable,
and the inner workings are not well understood.

39 / 39

Introduction
Three Easy, Automated Techniques

Tools for Cryptography
Conclusion

Conclusion

If we use an automated technique,
The execution time is unpredictable,
and the inner workings are not well understood.

Yet, such techniques can be extremely useful:
typically not to break a cipher (requires too much
time/memory)
but to use as a tool to construct an attack.

39 / 39

Introduction
Three Easy, Automated Techniques

Tools for Cryptography
Conclusion

Conclusion

If we use an automated technique,
The execution time is unpredictable,
and the inner workings are not well understood.

Yet, such techniques can be extremely useful:
typically not to break a cipher (requires too much
time/memory)
but to use as a tool to construct an attack.

How to do this? We gave examples for three approaches:
MILP programming, SAT solvers, regular expressions.

39 / 39

Introduction
Three Easy, Automated Techniques

Tools for Cryptography
Conclusion

Conclusion

If we use an automated technique,
The execution time is unpredictable,
and the inner workings are not well understood.

Yet, such techniques can be extremely useful:
typically not to break a cipher (requires too much
time/memory)
but to use as a tool to construct an attack.

How to do this? We gave examples for three approaches:
MILP programming, SAT solvers, regular expressions.

Questions?

39 / 39

